EXPLICITLY REALIZING AVERAGE SIEGEL THETA
SERIES AS LINEAR COMBINATIONS OF EISENSTEIN
SERIES

LYNNE H. WALLING

ABSTRACT. We find nice representatives for the O-dimensional cusps of
the degree n Siegel upper half-space under the action of I'g(N). To each
of these we attach a Siegel Eisenstein series, and then we make explicit a
result of Siegel, realizing any integral weight average Siegel theta series
of arbitrary level A and Dirichlet character x, modulo N as a linear
combination of Siegel Eisenstein series.

1. INTRODUCTION

In the 1930’s Siegel introduced generalized theta series to study quadratic
forms and their representation numbers. Given an m X m symmetric matrix
Q for a positive definite quadratic form on a Z-lattice L, and given an n X n
symmetric matrix T for a positive semi-definite quadratic form, the Tth
Fourier coefficient of the degree n Siegel theta series ") (L;7) tells us the
number of dimension n sublattices of L on which the quadratic form @
restricts to T'. Siegel showed that 9(”)(L; 7) is a degree n, weight m /2 Siegel
modular form of some level N and character x, modulo N. Further, in
[4], Siegel showed that upon averaging the theta series over the genus of L,
the resulting average theta series 6(")(gen L;7) is a linear combination of
Siegel Eisenstein series, and the coefficients in this linear combination are
generalized Gauss sums.

Here we consider the case when m = 2k (k € Z4) and n < k — 1 (the
condition n < k — 1 is to ensure the convergence of the Siegel Eisenstein
series we define). The elements of I'no\Sp,(Z)/To(N) are sometimes called
the O-dimensional cusps of the degree n Siegel upper half-space under the
action of T'o(N), and for each T'ooyTo(N) € Too\Spn(Z)/To(N), there is a
degree n Siegel Eisenstein series E, transforming under I'o(N) with weight
k and any chosen character y modulo N (defined in Section 3). Varying
7 to get a complete set of representatives, we know that those E. that are
nonzero form a basis for the space of Siegel Eisenstein series.

The majority of effort in this paper is spent on finding nice representatives

I 0\ . .
Mo1) Section
4 we define the meaning of ~,, being a reduced representative modulo an
odd prime, modulo 2, modulo 4, and modulo any power of 2 when n = 1;

for the 0-dimensional cusps. Writing v,, for the matrix
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we also define the meaning of v,, being a partially reduced representative
modulo 2¢ where ¢/ > 3. When n = 1 or 8 f N, we find a complete set
of representatives {v,,} for I'eo\Spn(Z)/To(N) so that each ~,, is reduced
modulo N; when n > 1 and 8N, we find a set {v,,} that contains a com-
plete set of representatives so that with ¢/ = orda(N), each ~,, is reduced
modulo N/ 2¢ and partially reduced modulo 2¢ (see Propositions 4.2 and
4.3). Further, given +,, so that ,, is reduced modulo N/ 2¢" and partially
reduced modulo 2¢, M is diagonal modulo qordq(N ) for ¢ an odd prime divid-
ing AV, and M is an orthogonal sum of unary and binary blocks modulo 2¢ .
Using these representatives and the local structure of the lattice L at each
prime dividing N, it is fairly straightforward (and amusing) to evaluate the
generalized Gauss sums that give us (™ (gen L; ) as a linear combination
of the Siegel Eisenstein series corresponding to these representatives v,,.
Consequently we prove the following.

Theorem 1.1. Let L be a rank 2k Z-lattice (k € Z4), and let Q) be a 2k x 2k
integral symmetric matriz defining a positive definite quadratic form on L so
that Q(x) € 27 for any x € L. Let N be the level of Q, and set ¢’ = orda(N).
Let {v,,} be a complete set of representatives for T's;\Spn(Z)/To(N') so that
when € < 2 orn =1, each v,, is reduced modulo N, and when € > 3 and

n > 1, each v,, is reduced modulo ./\/’/26/ and partially reduced modulo 2°.
Then for n € Z4+ withn < k — 1, we have

0" (gen L; 7) = mZa(L, M)E
M
where k = 1 if N' > 2 and § otherwise, and a(L, M) = [Tgn aq(L, M) (g
prime) with aq(L, M) defined as follows. For a prime g|N with ¢° || N, we
take G € SLo(Z) so that

Ym

'GQG =Jy L gty L L g°J. (¢°F2)

with each J. of size ro X 1o (some r. > 0) and J. invertible modulo q when
re > 0; we also have

M=MyLgM L--- 1L ¢M (¢°)

with each M; of size dj x d; (some dj) and M; invertible modulo q¢ when
d;j > 0. Then

T (]'*C)Tcd'/2 1 ZfQ‘C_J7
ag(L, M) =[] ]] ¢ i/2 .

c=1j=0 qfrcdj/QQJc,Mj (q) otherwise.

For q odd,

det JC) 9 (det M;

G (q) = ( . .

Te
) @
where G1(q) is the classical Gauss sum; for q =2, Gy, n,(2) is similar (but
there are several cases), and the value of this quantity is given explicitly in
Proposition 5.5.
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This theorem leaves the following questions unanswered: how do we find
a basis of Siegel Eisenstein series when n > k — 1, and how do we find a
complete set of representatives for I'oo\Spn(Z)/To(N) when n > 1 and 8|N'?

The author thanks Bristol’s Automorphics Anonymous, Wai Kiu Chan,
and Jens Funke for fun and helpful conversations.

2. PRELIMINARIES

Let L =Zx1® - - ® Zxy,, a Z-lattice of rank m, and let (Q be an m x m
symmetric matrix with integral entries. Thus ) defines a quadratic form on
L, via the rule that for x = a1x1 + - - - + amzy, € L, we have

Q)= (a1 - an) Q (a1 -+ an).
We assume that () defines a positive definite quadratic form on L, meaning
that for x € L, Q(x) > 0 whenever z € L with x # 0. We also assume
that @ is even integral, meaning that @ € Z{m with even diagonal entries
(here, for a ring R, R¢ym denotes the set of n x n symmetric matrices with
entries in R). Thus for any = € L, we have Q(x) € 2Z. The level of @ (also
called the level of L) is the smallest positive integer A" so that NQ~! is even
integral.
For n € Z, we define the theta series (™ (L; 1) with variable

TES’)(n)Z{X—i—Z’Y: X,YE]RQ};TI;, Y>0}
by setting

0 (LiT) = Y e{QU)T),
Uezmmn
where Y > 0 means that Y represents a positive definite quadratic form,
e{*} = exp(miTr(x)), and Q(U) = ‘UQU. As mentioned earlier, 6" (L;7)
is a Siegel modular form of degree n, weight m/2, level N’ and quadratic
character x modulo N, meaning that with

Spn(Z) = {(é g) :A'B=B'A, C'D=D'C, AtD—BtC:I}

" ro) = {(& ) e smi@: wic }.

for any v = <é g) € Iy(N), we have

0" (L; )|y := det(CT 4+ D)"™2 0™ (L; (AT + B)(CT 4+ D)™ 1)
= x, (det D) 8™ (L; 7).
When m is odd, we need to specify how we are taking square-roots; from
hereon, we will assume that m = 2k with k € Z. With this assumption, for
d € Z with (d,N') =1, we have

1) de
Yo (d) = (W) sen(d)F.

Suppose that L’ is a rank 2k Z-lattice with a positive definite quadratic
form given by Q' € Zgm (relative to some Z-basis for L'). With L as
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above, we say that L’ is in the genus of L if, for every prime ¢, there is
some G € GLok(Z,) so that 'GQ'G = Q; here Z, denotes the set of g-adic
integers. We say that L’ is in the same isometry class as L if there is some
G € GLok(Z) so that 'GQ'G = Q. We define o(L’) to be the order of the
orthogonal group of I’ (being all G € GLay(Z) so that 'GQ'G = @Q'), and
we set

1 1
(n) 7)) = M) (!
0" (gen L; T) —— E (L/)H (L'57)

o
cls L’€gen L
where

1
mass L = Z 0

o
clsL’egen L

(so the Oth Fourier coefficient of (") (gen L;7) is 1, as is the Oth Fourier
coefficient of 8 (L; 7)).
Besides the subgroup T'o(N) of Sp,(Z), we also define the subgroups

TN)={yeSpu(Z): v=1N) },

= {(§ D)oo}

r;_{@ g) € Spn(Z): det D=1 }

In—l

and

G+

For later convenience, we set G4 = and v+ =

-1 Gy

We repeatedly use that Tr(AB) = Tr(BA) and hence e{AB} = e{BA}.
Also, with A, B denoting square matrices, we write A | B to denote the
block diagonal matrix diag{ A, B}, and for ring elements a1, ..., a,, we write
<a1, R ar> to denote diag{ai,...,a,}.

3. SIEGEL EISENSTEIN SERIES

In [5], we constructed Siegel Eisenstein series of degree n, weight k € Z,
level A and character y modulo A, presuming we have k > n + 1 (this
constraint is for reasons of convergence). Here we review this construction,
making a few minor modifications to this construction, resulting in a slight
modification to their normalizations; then we evaluate the Eisenstein series
at the cusps.

We first define an Eisenstein series for I'(N). With 6* chosen so that
IEIT(WN) = Us<I' 50" (disjoint) and 7 € $(,,), we set

A B _
E*(r) = ;1(7)15* where 1(7)] (C D) = det(CT + D)7
Since 1(7)|8 = 1 for B € T'L, E* is well-defined; further, it is analytic (in
all variables of 7). Note that for NV < 2, we have yx € I'(V) ~\ T'L and so
E* =0 unless k is even.

Now take v € Spp(Z). Set

Iy ={BeToN): Fcl(N)8 =TT (N)v },
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and
I ={BeToN): TLTN)yB =TLT(N)7 };

one easily checks that [I'y : T'] = 1 or 2. Choose 4,4’ so that

Lo(N) = UsT 6 (disjoint), I = Us D(NV)6" (disjoint);
using that I'(N) is a normal subgroup of Sp,(Z), we see that

T2To(N) = Upr sTLT(N)7d'6.
We set
E, = X(06")E*|yd'5;
5,0/

here x(d) means x(det D;). Note that for § € I'Y, we have

Us-TL0* 8 = TED(N )8 = TLT(N)y = Us T L6,

and so E*|y3 = E*|y; hence E/ is well-defined. Also, for any o € T'o(N),
dov varies over a set of coset representatives for T \I'g(N) as d does, and so
E’ |o = x(a)E,. Notice that

B, = (Z X(5')) S X(O)E .
&’ 0

and thus E} = 0 unless y is trivial on T'Y. Also notice that with v, d’,d as
above, we have
Loy To(N) = Us 5 (TLT(N)76'8 UTLT(N)7476'6)
and B, = (—l)kE’v.
For v € Spn(Z), set
1

E,=———F.
T Dy TV
So when E, # 0 and I'7 =T, we have
E,= Y X(OE|.
€T \To(N)

Now suppose that E, # 0 and F,‘*y' # I'y; take 8’ € Ty N\ T'L. Then

1 — * 1 —( nl! * /

E=r Y XOER+y Y EOE RS
€T \I'p(N) €Ty \I'o(N)

By our choice of 3/, we have 73y~ € v T'LT(N), so E*|v8" = x(—1)E*|.
Hence

E,=-(1+X(8)x(-1) > X(OE*|s,

el \I'p(N)

and so E, = 0 unless x(8') = x(—1).
Thus regardless of whether I’,‘; =TIy, when E, # 0 we have

E = Y XOE.
€T\ (N)
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As discussed in [5], as TooyLo(N) varies over T'oo\Spp(Z)/To(N), the
non-zero [, form a basis for the space of Siegel Eisenstein series of degree
n, weight k, level N, and character .

Now we evaluate the non-zero [, at the cusps.

Proposition 3.1. Suppose that o,y € Spy(Z) so that E, # 0. If a &
TooTo(N), then
lim E(7)la! = 0.

T—100

If a = B8 for some 8 € T and &' € To(N), then

) <
lim EW(T)]afl = 3 N __2’
X(0'B)  otherwise.

T—100

Proof. Since E, # 0, we have E* # 0 (so if /' < 2, k must be even). In [5],
we saw that

lim E*(r) =

T—100

2 ifN <2
1 ifN > 2.

Thus lim, e E4|a™ = 0 unless there is some § € I'o(N) so that yda~! €
I'oo'(N); so this limit is 0 whenever a & Ty (N).
Now suppose that a = 374’ for some 3 € T's and some ¢’ € T'o(N). Thus

Eyla™! = x(8"E, [y 187

Also,
lim B, (7)}y '8~ = lim Y X(OE(r)ysy 187!
T—100 T—100
€T \I'p(N)
= lim X(B8)E"(7)

as 7671871 € TooI'(N) if and only if § € I, (in which case X(8)E*|ydy~1 =
E*). Hence

lim E (7)o"t =x(6'8) lim E*(r).

T—100 T—100

(Note that y is trivial when A/ < 2.) O

Remark. Suppose that E, # 0. Recall that earlier we noticed that E,, , =

(=1)*E,. Thus with x = 1/2 when A/ < 2 and x = 1 otherwise, by the above
proposition we have

KX (1) = lim Ey(7)[(7£y) "

T—$100
= (-1 lim By (7)l(72)”
= k(—1).

1

Hence when E., # 0, we have y(—1) = (—1).
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4. REPRESENTATIVES FOR 0-DIMENSIONAL CUSPS

In this section, we assume that N is odd and we determine a set of
representatives for the 0-dimensional cusps, each of which corresponds to an
element of I'o\Spn(Z)/To(N). The representatives we find are of the form

(ar 1)

Definition. Take M € Zgym and set vy,, = <J\I4 ?) (so7,, € Spn(Z)). Set

1 0 1 2
of d copies of H.

H = (0 1> and A = (2 1). We write H¢ to denote the orthogonal sum

(a) Let ¢ be an odd prime; fix w so that (%) = —1. For e € Z, we

say that «,, is a reduced representative modulo ¢° if the following
conditions are met.

(i) M =My L gM; L --- L ¢°M, (¢°) with each M; d; x d; and
invertible modulo ¢; take ¢ minimal so that dy > 0 and take h
maximal so that dj > 0;

(ii) if ¢ < j < e with d; > 0 then M; = (1,...,1,&;) where g; = 1
or w;

(iii) if 0 < £ < h = e then M, = <1,...,1,54> where ey = 1 or w;
(iv) if £ < h < e then My = <1, . 1,€g> where 1 < g < gmin(be—h)
q1ee.

(b) For n = 1 and e € Z,, we say that ,, is a reduced representative
modulo 2¢ if M = 2% (2°) where 1 < & < 2min(be=0) with 2 {e.

(c) For n > 1, we say that 7,, is a reduced representative modulo 2 if
for some d € Z, M = 1; 1 0,4 (2); we say that v,, is a reduced
representative modulo 4 if for some d € Z, M =1 1L 2J; 1 4J5 (4)
where either J1 =1y or Ji=H 1L --- 1L H.

(d) For n > 1 and e > 3, we say that ~,, is a partially reduced represen-
tative modulo 2¢ if the following conditions are met.

(i) M = My L 2My L --- L 2°M, (2°) where each M, is d; x d;
and invertible modulo 2; take ¢ minimal so that d, > 0;

(i) if dg > 0 then My =1 (2°);

(ili) if £ < j < e with d;j > 0, then either M; is diagonal with
diagonal entries from the set {1,3,5,7}, or M; = H%/2 or
M; = H4/?1 1 4,
(iv) if 0 < ¢ < e then either M, = <771, ... 777de> with 91,...,74,—1 €
{1,3,5,7} and 74, odd, or My, = H%/>=1 | A" where A’ =
/
<2a ¢ 2) with a odd and a’ =0 or 1.
a 2da
For N € Z, with 8 N/, we say that ~,, is a reduced representative modulo
N if v,, is a reduced representative modulo ¢¢ for each prime ¢|N with

g | V-
We will show that each element of T's,\Spy(Z)/To(N) is represented by

exactly one reduced representative modulo N'. We begin with the following
easy proposition.
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Proposition 4.1. Fiz N € Z .

(a) Suppose that § € Sp,(Z). Then there is some M" € Zgm so that
0 € Foo’YM//FO(N)~

(b) Suppose that M, M" € Zgm so that G(M" I)3 = (M I) (N) where
G € GLy(Z) and B € To(N). Then v,,, € Loy To(N).

. A B
Proof. (a) Write 6 = <C D

Zsm so that (C D) = E(M" I)y for some E € SL,(Z) and v € Tx(N).

Hence with o
E~- I 0
/B = < E) and 70 = (M” I> 9

we have 8 € I'y, and

). By Proposition 3.4 [5], there is some M” €

Byoy = (2 ;) € Spn(Z).

Therefore § € T'oo 3707 C Tooyolo(N).
(b) By Proposition 3.3 [5], we have G(M" I)3 € (M I)I'(N) and hence

(7 ) (e foern (i o

From this the claim easily follows. U

Proposition 4.2. Let N € Z, and take § € Sp,(Z). Set € = orda(N).
When ¢’ <2 orn =1 there is a reduced representative v,, modulo N so that
§ € Tooyy To(N). When e’ > 3, there is some y,, € Spn(Z) with ~y,, reduced
modulo N'/2¢, ,, partially reduced modulo 2¢, and § € T'soy,, To(N).

Proof. By Proposition 4.1, there is some M" € Z{jm so that § € ooy, ,, To(N).
We show that v,, € I'wv,T'o(N) where v,, is a reduced representative
modulo N, and hence § € T'wv,,To(N).

To do this, for each prime ¢|N with ¢¢ || A/, we find matrices E(q), G(q)
SLn(Z) with E(q)G(q) =1 (N/q°), and a(q)B(q) € To(N) with a(q)B(q)
I (N/q), and so that

"E(q)'G(a)(M" Ia(q)B(q) = (M I) (¢°)
where 7,, is reduced modulo ¢° (or partially reduced when ¢ = 2 and e > 3).
Then we define E(N), GN), a(N), B(N) by setting E(N) = [, » E(q)

and so on. Thus we get
'EWN)'GN)(M" D)a(N)BN) = (M I) (N).

Consequently, by Proposition 4.1, § € T'ay,, To(N).
We first consider the case that ¢ is odd.
(a) Fix an odd prime g|A and e € Z; so that ¢° || N fix w € Z so that

(%) = —1. We know by §91 [3], or equivalently Corollary 8.2 and Theorem

85 of [2], that there is some G” € GL,(Z,) so that
tG//M//G// — Mé/ _]_ qM{/ L .. J_ qEMé/
with M ji" of size dj x d; for some dj, and when d; > 0 with j < e, M =

<1,...,1,77§-’> where 773’ = 1 or w. Fix £ to be minimal with d, > 0. Then

I m
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right-multiplying G” by a suitable diagonal matrix, we obtain G’ € SLy(Z,)
so that

tG/M//G/ — szé 1 qé—i-lMé_H e L qu/
where M} = (1, ...,1,17;->, with 7} = n for £ < j < e when d; > 0, and
n = ne(detG”) 2. Now take G = G(q) € SL,(Z) so that G = I (N'/¢°) and
G =G (¢°), and set M' = 'GM"G. Thus M' = ¢"M) L --- L ¢°M! (¢°).

Set a = a(q) = (G tG_1>; then a € Ty(N) with « = I (N/q°), and

fGM" Ia = ("GM"G 1).

We now find E = E(q) € SL,(Z ) and ﬁ = B(q) € To(N) so that
EM I)g = (M I) (N/g) and E(M' I)8 = (M I) (¢°) where v,, is a
reduced representative modulo ¢°.

First note that for £ < j < e we have M]’ = <1,...,1,n§> = ¢; where
n;=1orw.

Suppose that 0 < £ < h = e. Take u € Z so that néuQ = 1 or w modulo

¢, and take w so that uu = 1 (¢°). Take E' = (ZJ i) € SLy(Z) so that
/
FE = (u u> (¢°) and E' =1 (N/q°). Take ' = (E t(E’)_1> . Thus

Y 0,1,,2
tr (4N 1 q npu 1 e
We lift ' to

E=E(q) = (Vg )Z(> € SLa(Z)
with E =1 (N/q°) by taking
W =1I4-1 L {w), X =041 1L (x),
Y =0np-q,-1L(y), Z=1Ira-11L(2).
Set B = B(g) = (E tE—1> _Then
"E(M' 1) = (M I) (¢°)

where v,, is reduced modulo ¢°.
Now suppose that ¢ < h < e and ¢ < e—h. Choose 7, so that 1 <1y < qz
with 7, = 17, (¢¥). Thus with 7, € Z so that 7,m7;, = 1 (¢°), we have Moy =

1+ ¢*b’ for some b’ € Z. Take b = —,t/, and take ' = (;j z> € SLy(7)

b
_ €). The
7727”) (¢°) n

(a“np DB = (¢"ne 1) (¢°)-
We lift 8" to 8 = B(q) € To(N) with 8 = I (N/q°) by setting 3 = <

where

so that 8/ =1 (N/¢°) and ' = <77,e77€

W X
Y Z

W =1I41L{w) LIy, X=0g-1L(zx)L0,,,
Y =0q,-1 L {y) L 0py, Z=1Iq-1L{z) LIy
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Then (M’ I)B = (M I) (¢¢) where 7,, is reduced modulo ¢°. We set E(q) =
I

Finally, suppose that £ < h < eand 0 < e — h < £ < e. Choose 7y
so that 1 < ny < ¢*" with 0, = m (¢° ™). As e —h > 0, we know that

(WT%) = 1 and so there is some u € Z so that nju®> = n, (¢°). Take

B = <Z) i) € SLy(Z) so that E' =1 (N/q°) and E' = (u > (q°)
El
where tu =1 (¢°). Take §' = ( t(E’)_1> . Then
Y 1 0 1
tE/<qm — (ae - ~
qhn;l 1 B qhniﬂﬂ 1 (¢°)

We have u% = n,m, = 1 (¢°7"), and thus ¢"n},u* = ¢"n), (¢°). We lift E' to

E =E(q) € SL,(Z) with E =1 (N'/q°) by setting E' = (?f/ )Z(> where

W =141 L {w), X =041 L (),
Y = On—dg—l 1 <y>7 Z = n—dg—1 1 <Z>
Set 8= B(q) = (E tE_1> .So B eTo(N) with 8 =1 (N/q°), and

'E(M' B = (M I) (¢°)

where 7,, is reduced modulo ¢°.

(b) Now suppose that n = 1, and fix a prime ¢|N with ¢¢ || /; take ¢ and
7 so that M” = ¢'n/, ¢ 1. If £ > e then Y, is a reduced representative
modulo ¢¢. So suppose that ¢ < e.

Suppose that e — ¢ < £. Take n so that 1 <5 < ¢¢~* with n = (¢¢).
Then (¢‘n’ 1) = (¢n 1) (¢), and so Y, 18 reduced modulo ¢°. Take
E(q),G(q),a(q), B(q) to be identity matrices.

Suppose that £ < e — £. Choose 7 so that 1 < n < ¢* with n =17/ (¢%).
Take u so that u = 71/ (¢°) where '’ = 1 (¢°). Thus with @ so that
au = 1 (¢°), we have @ = 1 + ¢‘b’ for some b'. Take b = —n/t/, and take

B = B(q) € SLa(Z) so that 8 = I (N/q°) and § = <g g (¢°). Thus
(M" 1) = (M 1) where 7,, is reduced modulo ¢¢. Take E(q), G(q), a(q) to
be identity matrices.
(c) Suppose that n > 1 and 2° || NV where e > 0. By §93 of [3], or
equivalently Theorem 8.9 of [2], there is some G” € GL,(Zs2) so that
tG//M//G// — Mé/ J_ 2M{/ J_ . J_ 26M//
e
with M} d;j x d; for some dj, and when d; > 0 with j < e, either M
is diagonal with entries from {1,3,5,7}, or M]’-’ = H 1 --- L H where

H:<0 1) OrMJ{/:HJ_...J_HJ_AWhereA: . Then as in

2 1
1 0)° 1 2
case (a), we can take G = G(2) € SL,(Z) so that G =1 (N /2¢) and
M ='GM"G=2"'M) L --- 1 2°M! (2°)



AVERAGE SIEGEL THETA SERIES AS EISENSTEIN SERIES 11

where M} = M for £ < j < e, and

Mé:c (detG”)‘1> ¢ <I (detG”)_1>'

Set «(2) = (G to-1 -

Note that if d; > 0 then 2M{ = 214, (4) or 2M{ = H 1 --- 1L H (4);
hence if dgp = 0, then v, , is completely reduced modulo 2° if e < 2, and
partially reduced modulo 2°¢ if e > 3. So when dy = 0 we take E(2) = I and

B2) =1
Suppose that dy > 0. Take v € Z so that v = det M (2°) and v =

en. w T w T\ _ (v
1 (N/2°9); take (y z) € SLy(Z) so that (y z) = < v) (N) where
W X
Y Z
W =14 L{w) L I g5, X =0g, L (z) L 0Op_qp,
Y =0g, L (y) L Op—dy, Z=1Iq5 L(2) LI g,
Now take M} so that MJM} = I (2¢), and take U € SLg,(Z) so that U =
I v> M (2¢) and U = T (N/2°). Take U’ so that U’ = U(I — M}) (2°)
and U’ =0 (N/2°). Set

=1 (N). Take ' = ( > where

U U’
5// _ In—do thl
In—do
So 8" € To(N) and 6" =1 (N/2°). Set 8= [(2) =§6" and E = E(2) = I.
Then 'E*G(M" INaf = (M I) (2¢) where v,, is reduced modulo 2¢ if e < 2,
and partially reduced modulo 2€ if e > 3. O

Proposition 4.3. Take N € Z, and set ¢’ = orda(N). Suppose that vy, , €
Loy Do(N) where v,, and v,,, are reduced representatives modulo N/2¢;
also suppose that v,, and v,,, are reduced representatives modulo 2¢ when
¢’ < 2, and partially reduced representatives modulo 2¢ when ¢’ > 3. Then
M = M (N/2¢), and M’ = M (2¢) if ¢ < 2. Hence for ¢ < 2, as
vy varies over reduced representatives modulo N, {v,,} is a complete set
of representatives for T'oo\Spn(Z)/To(N); for ¢ > 3, as v,, varies over
representatives that are reduced modulo N/ 2¢ and partially reduced modulo
2¢ the set {~y,,} contains a set of representatives for Too\Spn(Z)/To(N).

Proof. Since v,,, € T'aoy,,To(N), we that there are E € GL,(Z) and 0 =

(é g) € To(N) so that E(M I)§ = (M’ I). Set (M" I) = G (M’ I)vs.
Since M is diagonal modulo A'/2¢, we have M” = M’ (N'/2¢); when ¢’ < 2,
we have M” = M’ (2¢). Thus replacing Yo DY 7£7,, V= if necessary, we
can assume that E(M I)§ = (M’ I) with E € SL,(Z).

For €’ < 2, Proposition 3.4 [5] shows that M’ = M (2¢).
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So suppose that ¢ is an odd prime dividing A with ¢¢ | N. We have
M=MyLqgM; L--- 1 q¢°M. (¢°)

with M; d; x d; for some d;, and when d; > 0, M; = <1, e 1,5i> where ¢;
is as in the definition of a reduced representative modulo ¢°. Similarly,
M' =M, 1L gM; L. 1L q*M (¢°)

with M; d; x d; for some d;, and when d; > 0, M/ = (1,...,1,&;) where €} is
as in the definition of a reduced representative modulo ¢¢. Take £ minimal so
that dy > 0, and take h maximal so that d; > 0. Note that by assumption,
M' = EMA (¢°), where E, A are necessarily invertible modulo ¢ Therefore
¢" || M’ as ¢* || M. So for 0 < i < ¢, we have d, = 0, and d, > 0. We first
want to show d} = d; for each i with ¢ <1i <e.

If ¢ = e then, since ¢'|C, we have M’ = M = 0 (¢°) so we are done. So
suppose ¢ < e.

Take r = min(h — f,e — 1 —¥). For 0 <i <r, take

Si=1I4 Lqly,, L Lq'ly,, LqgTIezm"
So Sp =1, and
q S M = My L My L+ L Myyiy Lq7 7 (¢ My L -+ L g"My,).
Suppose that 0 < i < 7, Si_lESi is integral (hence invertible modulo q),

and d;- =dj for £ < j < £ +i. We claim dj ; = dgy; and 5;11E5i+1 is
integral. We have

dg+dpyy + -+ dpy = rank, (¢ °S;7IM)
= rank,(S; ' ES;)(¢7¢S; M) A.
Since S; 1ES; and A are integral and invertible modulo ¢, and q_ZSi_ LM s
integral, we must have that q_ES; LM’ is integral. Therefore
dp+dpyy + -+ doyi = rank, (¢~ ¢S M)
= dg + dp1 + -+ degio1 + di.

Hence dyy; = dy ;. Also, we have

—£g—1 Ul —0 o—1 ! U{
S~IM = g lSTIM = :
7 i ( qU2> 4 < qU§>

e (E1 B _ (A1 A
STUES, = <E3 E4>, 4= <A3 v
where Uy, U7, E1, Ay are (dg + -+ +dgyi) X (dg + -+ - + dog), and Uy, U{ are
invertible modulo ¢. So (recalling that EM A = M’ (¢°)), we have

U{ _ E1U1A1 E1U1A2 ( )
0) = \Bsth A, E.UAy) Y
Hence FEj, A; are invertible modulo ¢ and E3 = 0 (¢). Thus with ¢ =

de+ -+ degiga,
I > (T
L) S, < : )

is integral; that is, S’;rllESiH is integral.

and
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Hence by induction on i, we have that dy;; = d’f i for0 <i<r =
min(h —¢,e —1—{), and S, 'ES, is integral. Since M’ = ‘AM'E (¢*), the
above argument also shows that S,.AS! is integral.

With renewed notation, write £ = (E;;), A = (A;;) where E;;, A;; are d; X
d;j (¢ <i,j < h). Since E, A are invertible modulo ¢ and S, 1ES,, S, AS;!
are integral, we have E;j, A;; =0 (¢"~7) whenever j < i < e. Thus Ej; and
A;; are invertible modulo ¢ for all . Hence for £ < i < e, we have

h
szi/ = ZEijq]MjAji (qe).
j=t
For j < i < e we have quZ-ijAji =0 (¢"77), and so M| = E;A; Aii (q).
Since E(M 1) (6‘ g) = (M I) (¢°), we have E(MB + D) = I (¢°). We
have ¢‘|M, so ED = I (¢%). We also have *AD =TI (¢°), so E = A (¢%).
Therefore E;; = tAy; (¢°) for all 4. Hence for all i, we have

(detM{) B <detMi>
q q '

Since <I O) and ( ]\i, ?) are reduced representatives modulo ¢, this

M I
means that ¢'M] = ¢'M; (¢°) for { < i < e and ¢"M, = ¢"M (¢°) if £ =0
orf=cor0</l{<h=e.

So now suppose that 0 < £ < h < e. Thus with m = min(¢,e — h),
we have M, = (1,...,1,&/) (¢°7%) and M) = (1,...,1,¢}) (¢°*) where
1 <epe) < q™, qtep,e) Since

q 'S, EMA = (S, ' ESy_0)(q¢"S; M)A,
we have
My L LMy = (S ESh_¢)(My L -+ L M)A (¢°")
with S,:EZESh_g integral with determinant 1, and det A = 1 (¢%). Hence
det(My L --- L M})=det(M, L --- L M) (¢™).
We have seen that for £ < i < h (with d; > 0), we have ¢'M] = ¢'M; (¢°),
and hence det M/ = det M; (¢°~"). Thus det M] = det M; (¢™) for £ < i <
h. Consequently, since det M; is a unit modulo ¢ when d; > 0, we have
det My = det M, (¢™). Hence M, = M, (¢™), and so M’ = M (q°).

As this holds for all primes ¢|N with ¢¢ || N, we have M' = M (¢¢). Thus

Yo =1 (N), and hence v, € 7, [(N). O

5. EVALUATING AVERAGE THETA SERIES AT THE CUSPS

As noted earlier, in [4] Siegel showed that the value of the average theta
series at any 0-dimensional cusp is given by a generalized Gauss sum. Here
we first review that result, using the representatives for the 0-dimensional
cusps that we described earlier. Then we unwind the generalized Gauss sum
to realize it explicitly in terms of powers of primes, Legendre symbols, and
eighth roots of unity.
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Proposition 5.1. Suppose that L = Zx1 @ - - - ® ZLxy, withm =2k, k € Z.
Also suppose that Q € Zsym' is the matrix for a positive definite, even integral

quadratic form on L relative to the given basis for L; let N be the level of

Q. Take <—§\4 ?) € Spn(Z). Then we have

. on I 0\
Am 07 (L5 )l (—M I) = ]I au(z.0)
¢°INV
q prime
where, with q prime and ¢° | N,
aq(L, M) =q ™" S NQTI(V)M/g).

VeZm,n/qum,n

Proof. We will use the Inversion Formula (Lemma 1.3.15 [1]), which says
the following. With Uy € Q""" and

0" (L, Uoim) = > e{QU + Uo7},
UGZm,n
we have
0™ (L, Up; 7) = (det Q)™ *(det(—ir))™™? Y o{-Q ' (U)r" —2'U'Up}.
Ulezm,n

Take (—5\4 ?) € Spn(Z). Then applying the Inversion Formula we have

0™ (L; r(— Mt + n-
= (det Q)™ ?(det(—iT(—MTt + I)~1))~™/?
> o=@ UM}
Uezmn
= (det Q)™ ?(det(—iT(—MT + I)~1))~™/?
> {Q HU) MY (N?Q~ Y, N1 Uy; —r71).
Up€Zm-m JNZmn
Applying the Inversion Formula again, we get
0" (Lyr(—M7+ 1))
= N~ det(— M7 + I)* > {Q Y (Uy)M — 2Nt UL}
Uo,U1€Zm'"/NZm!”
> QWU+ TU)T)
Uezm:mn
Now we consider

i 0™zl () )
=N ST e{QTH (UM — 2N U UL}

Uo, U1 (N)

-+ lim_ > QT+ U)TY.

vezm:mn
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We have

Jm 3 el@W T+ U)r) =

vezmmn

{1 if Uy € NZmm

0 otherwise.

Hence

. I 0 _ _
lim 60 (L:7) (_ y I) — NS QN (Uo) MY
Uo (N)
Write N' = gi* - - - ¢& where gy, ..., qs are the distinct primes dividing NV,
and set Nj = N /q¢{*. Let £ =Z™" (an additive group). One easily verifies
that the map

(Ui +NL,...,.Us+NL)— U+ +Us + NL

defines an isomorphism from N1L & --- & NL onto L/NL. Also, for U; =
N;Vi e NiL (1 <i < s5), since NQ ™! is even integral we have

Q' (Ui +--+U) =) Q' (U) (22).
=1

Hence

Yoo oM =TI Y. e (vi)M}

UeL/NL i=1 Viec/qfig
|

Next we use the local structure of @) over Z, for a prime ¢|A to simplify
the sum defining a,(L, M), describing it in terms of invariants of Z,L, M
modulo ¢, and certain generalized Gauss sums, defined as follows.
Definition. Suppose that ¢ is prime, and r,d, h € Z,. Take J' € Z§m and
M e Zg}’,‘fn so that J" and M’ are invertible modulo ¢, and 2|J" when g # 2.
Set

Grar(d) = > efJ'(@)M'/q"}.
meZ'r,d/th'r,e

For z,y € Z"%, one easily verifies that e{.J' (z+q"y)M'/q"} = e{J'(x)M'/q"},
and hence Gy p(¢") is well-defined. Note that for E € SL,(Z) and G €
SLy4(Z), EUG varies over Z"?%/¢q"Z"% as U does; hence with J” =t EJ'E
and M" = GM''G, we have Gy pv(q") = Gy (q"). Also, Gy (qh) =
G, (q").

Proposition 5.2. Suppose that L = Zx1 & - - - Lz, is equipped with an even
integral quadratic form represented by Q € Ziym relative to the given basis

for L. Let N be the level of Q, and suppose that q is a prime with ¢¢ || N
where e € Z4.

(a) There is some G € SLy(Zq) so that
GQ'G=JyLqJ L---¢Je (¢°F?)
where each J. is r. X re for some r.. Further, when q # 2 andr. > 0,

Jo=2(1,...,1,vc)
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with q t ve; when ¢ =2 and . > 0,
J. = <,u1, .. ,,urc> or Hi/2 op [de/2-1 | A,

0 1 2a! e

1 0) and A, = <CLCC 2a'cag>
with al, = 0 or 1, and a. odd. Also, when ¢ = 2 and ro > 0, Jy is
even integral. Further, when q # 2, ro > 0; when q = 2, Jy is even
integral, and either v > 0 and J. is even integral, or r. = 0 and
Te—1 > 0 with Je—1 diagonal.

(b) Take M € Zgym so that

where py, ..., pur, € {1,3,5,7}, H = (

M=MyLgM L1 ¢M,

with each Mj d; x dj, and M; is invertible modulo q when d; > 0.
Then

Yo NPT (V)M/g*Y
VGZm,n/qum,n

e c—1

=¢" [T I] 7Y 9Gsm, (@)

c=13j=0

where, for each ¢ so thatr. >0, J. = (I ) Je <I > for some
Uc Uc
Uc, 4 )f Ue

Proof. (a) Fix a prime ¢ with ¢° || N/. By §93 of [3], or equivalently Theorems
8.5 and 8.9 of [2], we know that there is some G’ € SL,,(Z,) so that

tG/QG/ = Jo €L qu 1 'que

where each J. is as in the statement of the proposition; in particular, each
J. is invertible modulo q. Note that since @ is even integral, when ¢ = 2 and
ro > 0, we have that Jj is even integral; also, when ¢ = 2 and r. > 0, we have
that J, is even integral since NQ ™! is even integral. Taking G € SL,(Z)
so that G = G’ (¢°™1), we get

'GQG = Jy L gJy L+ q°Je (¢°F?).
(b) Take G’ as in (a). Then
(GG =gyt L Lgeat
Take N/ = N /¢° and u € Z, so that

G'=WNG)Y YW Jy LJ L---LJ.) (I u) € SLim(Zy)

(recall that each J; is invertible over Z, whenever r; > 0). Take E' € SL,,(Z)
so that E = G” (¢°). Thus ¢*(N")*'EQ'E = Q' (¢°) where

Q =q¢Jy L J L LJL(¢°)



AVERAGE SIEGEL THETA SERIES AS EISENSTEIN SERIES 17

and, for each ¢ so that r. > 0, either J. = J. or J. = <I u> Je (I u) i
Since EV varies over Z™" [q°Z™™ as V does, we have

> NQTH(V)M/ g}

VGZm,n/qum,n

= ) fQ(V)M/¢}

VEZm,n/qum,n

=1I11 > o{ Je(x)M;/q7}

c=0 ]:0 {L‘EZTC'dj /quV'c:dj

e c—1
_ qroe(d0+"'+de) H q’/‘ce(dc-‘,-~--+de) H q’l"cdj (e—c+j)gG,c7Mj (qc—j)
c=1 J=0
e c—1 ) )
= qmne H H chdj (]_C)gJ’c,MJ‘ (qc_])
c=135=0

where, for the last equality, we used that dg+---+d. =nand ro+---+7r. =
m. O

We now evaluate the Gauss sums that appear in the above proposition.
We first use a standard argument to reduce the modulus of the Gauss sum.

Proposition 5.3. Let ¢ be a prime, r,d € Zy, J € Zgm, M' € st}’,ﬁln
(r,d >0) so that J', M" are invertible modulo q. Then for h > 2, we have

rdh/2 )
w a if 2|h,
Gy.m (¢") = {qrd(hl)/QgJ,7M,(q) otherwise.

Proof. We have
Grar(q") = Z Z o{J'(x+q"y)M'/q"}

erT',d/thlzr,d yGZr,d/qu,d
= Y e{J@M/"y D e{M'aty/q}.
err,d/qh—IZr,d yle,d/qZT,d
This last sum on y is a character sum, yielding 0 if ¢ f z and ¢"? otherwise.

Hence Gy ar(q") = ¢"Gy p0(¢"2). Repeated applications of this identity
yields the result. O

Now we evaluate the Gauss sums G /(q), separating the cases of ¢ odd
and even.

T

Proposition 5.4. Let q be an odd prime. Suppose that J € Zgm and
M e Zg}’ffn (r,d > 0) so that J', M are invertible modulo q. Then

Granla) = (1 )d (“2) @ia

where G1(q) is the classical Gauss sum. Thus for u € Z with ¢t u and

(1))
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we have Gy (q) = G (q).

Proof. As in the proof of Proposition 5.2, we can find E € SL,.(Z) and E’ €
SL4(Z) so that 'EJ'E = 2(1,...,1,v) (¢) and "E'M'E' = (1,...,1,¢) (q).
As ExE’ varies over Z"?%/qZ™¢ as x does, we can replace z by ExE’ in the
sum defining Gy (q). Expanding ‘z(*EJ'E)x('E'M'E") we find that

Gy (q) = (gl,M’(Q))T_l G (q)
= (G1(g) " (G (@) (Ge@) - Guela)-
Since Ga(q) = (g) G1(q), the result follows. O

To help us state the next proposition, we introduce the following termi-
nology.
Definition. Suppose that J' € Zgm (r > 0) so that 2  detJ” and J'
is even integral. As discussed in the proof of Proposition 5.2, we can find
E € SL,(Z) so that

'‘EJE=H1--- 1L HLA (4
0 1 2 1
10 12

say that J’ is hyperbolic modulo 4; note that J’ is hyperbolic modulo 4
exactly when .J' is even integral and (—1)"/2det.J’ =1 (4).

where H = < > and A’ = +H or + ( > . When A’ = +H then we

Proposition 5.5. Suppose that J' € Ziym and M’ € ngfn (r,d > 0) so that
J', M’ are invertible modulo 2.

(a) Suppose that J' and M' are even integral. Then Gy pp(2) = 27%/2.

(b) Suppose that either J' or M' is not even integral, and that the other is
even integral and hyperbolic modulo 4. Then Then Gy ap(2) = ord/2

(¢) Suppose that either J' or M' is not even integral, and that the other
is even integral but not hyperbolic modulo 4. Then Gy p(2) =
(_1)rd2rd/2.

(d) Suppose that neither J' nor M’ is even integral; in this case there
evist E € SL.(Z), E' € SLq4(Z), v',d" € Z so that
'EJJE=1, 131,y (4) and '"E'M'E' = Iy 1 314_¢ (4).
Then gJ/,M’(2) — (2,L')Td/2(_Z')Qr’d’—rd’—r’d_

Also, for odd w € 7. and

= (1) ()
u u
we have Gy (2) = G (2).
Proof. As we saw in the proof of Proposition 5.2, we can find E € SL,(Z)
so that when J’' is even integral we have
‘EJE=H1---1HLA (4)

with A’ = +H or :i:(? ;

‘EJ'E =1, L3I, (4) for some r’. Similarly, we can find E’ € SLg(Z) so

>, and when J’ is not even integral we have
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that when M’ is even integral we have
'‘EM'E'=H 1 --- 1L H 1A (4)
with A” = £H or &+ (? ;
'E'M'E' = Iy 1 3144 (4) for some d'. In the sum defining G/ p/(2), we
can replace x € Z"4/27"% by ExE’, and then Gy 5/(2) decomposes as a
product of sums over 2 x 2 or 2 x 1 or 1 x 2 or 1 X 1 matrices modulo 2.

! / 1 //
For A/ = (25,‘ 2bc,>, A = <2b‘f, 2bc,,> with &, odd, we have

), and when M’ is not even integral we have

Y A @Ay =2 > e{uw/VV} =4
T €722 [272:2 u,u' €Z,/27
2 1

/ " __
With A’ =+H, A (1 9

) and € odd, we have
Y e{A(z)e/2} =2and > efd"(x)e/2} = -

€721 €721

Finally, with ve odd, we have

Z e{u€x2/2}—{1+? ?fuezl(él),

Ny 1—i4 ifve=-1(4).

From this the proposition follows. U

6. PROOF OF THEOREM 1.1

We have a dimension 2k Z-lattice L equipped with a positive definite,
even integral quadratic form represented by Q € Z23F. We let M € Zm,
vary so that {E M} is a basis for the space of Siegel Eisenstein series of
degree n, weight k, level N, and character x, (where y, is the character
associated to 8 (L;7), as defined in Section 2). By Proposition 4.2, we

can assume that each v,, = < > is a reduced representative modulo

M I

N/ 20rd2(N) and a partially reduced representative modulo 20rd2(N) - From
[4], we know that for some a’(L, M) we have

0" (gen L; 7) = Z a (L, M)E, .
M

For E, —and E, in the basis for Siegel Eisenstein series, Proposition 3.1
gives us
2 if N=M and N < 2,
lim E, ()7, =41 if N=Mand N > 2,
T—100
0 otherwise,
and Proposition 5.1 gives us
; (n)
Jim 0" (Ly )yt = [ ] ag(L, M)
alN
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where aq(L, M) is defined in Proposition 5.1.
Fix a prime ¢|N with ¢¢ || N. By Proposition 5.2, there is some G €
SL.,(Z) so that

'\GQG =Jy L gty L+ L g%J, (¢°72)

where for 0 < ¢ < e, there is some r. so that J. is 7. X r., integral and
symmetric, with ¢ { det J. when r. > 0. Also, by our choices of M,

M=My L gM L1 ¢M. (¢°)

where for 0 < j < e, there is some d; so that M; is d; x d;, integral and
symmetric, with ¢ { M; when d; > 0. By Propositions 5.2 and 5.3, aq(L, M)

is determined by G s ar,(q) (0 < j < ¢ <e) where J. = d " Je (I " >

for some wu, with ¢ { u.. By Propositions 5.4 and 5.5, we have G a7.(q) =
GJ.,m;(q), and when ¢ is odd, G, n,(q) is determined by the dimensions and
determinants of J. and M;.

Now consider the case that ¢ = 2. A priori, by Proposition 5.5, G a1, (2)
is determined by the structures of J. and M; modulo 4, yet we only know the
structure of M,_1 modulo 2, and we do not even know the structure of M,
modulo 2. However, the formula for a,(L, M) only involves the Gauss sums
G.m;(2) for 0 < j < ¢ < e, so we only need to ascertain that G, v, _,(2) is
well-determined by M._1 modulo 2 in the case that r¢,d.—1 > 0. In the case
that re, de—1 > 0, we know from Proposition 5.2 that J. is even integral, and
so by Proposition 5.5, the value of G, ar._,(2) is determined by whether J.
is hyperbolic, and whether M._; is even integral (which can be discerned
by M._1 modulo 2).

Consequently Propositions 5.1-5.5 show that lim, ;0 9(”)(L;T)]fy;41 is
determined by M and the local structure of L at each prime dividing N.
Hence

lim 9(”)(gen L; T)]'y]\_ll = lim 6™ (L;T) = /@H aq(L, M)

T—100 T—100
qlN

where K = 1 if N > 2 and xk = 1/2 otherwise. Also, Propositions 5.1-5.5
give us the exact value of a4(L, M) for each prime g|N. Note that since
a'(L, M) # 0 for those M in the theorem, we conclude that E, # 0.
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