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Abstract. We find nice representatives for the 0-dimensional cusps of
the degree n Siegel upper half-space under the action of Γ0(N ). To each
of these we attach a Siegel Eisenstein series, and then we make explicit a
result of Siegel, realizing any integral weight average Siegel theta series
of arbitrary level N and Dirichlet character χL modulo N as a linear
combination of Siegel Eisenstein series.

1. Introduction

In the 1930’s Siegel introduced generalized theta series to study quadratic
forms and their representation numbers. Given an m×m symmetric matrix
Q for a positive definite quadratic form on a Z-lattice L, and given an n×n
symmetric matrix T for a positive semi-definite quadratic form, the T th
Fourier coefficient of the degree n Siegel theta series θ(n)(L; τ) tells us the
number of dimension n sublattices of L on which the quadratic form Q
restricts to T . Siegel showed that θ(n)(L; τ) is a degree n, weight m/2 Siegel
modular form of some level N and character χL modulo N . Further, in
[4], Siegel showed that upon averaging the theta series over the genus of L,

the resulting average theta series θ(n)(genL; τ) is a linear combination of
Siegel Eisenstein series, and the coefficients in this linear combination are
generalized Gauss sums.

Here we consider the case when m = 2k (k ∈ Z+) and n < k − 1 (the
condition n < k − 1 is to ensure the convergence of the Siegel Eisenstein
series we define). The elements of Γ∞\Spn(Z)/Γ0(N ) are sometimes called
the 0-dimensional cusps of the degree n Siegel upper half-space under the
action of Γ0(N ), and for each Γ∞γΓ0(N ) ∈ Γ∞\Spn(Z)/Γ0(N ), there is a
degree n Siegel Eisenstein series Eγ transforming under Γ0(N ) with weight
k and any chosen character χ modulo N (defined in Section 3). Varying
γ to get a complete set of representatives, we know that those Eγ that are
nonzero form a basis for the space of Siegel Eisenstein series.

The majority of effort in this paper is spent on finding nice representatives

for the 0-dimensional cusps. Writing γM for the matrix

(
I 0
M I

)
, in Section

4 we define the meaning of γM being a reduced representative modulo an
odd prime, modulo 2, modulo 4, and modulo any power of 2 when n = 1;
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we also define the meaning of γM being a partially reduced representative

modulo 2e
′

where e′ ≥ 3. When n = 1 or 8 - N , we find a complete set
of representatives {γM } for Γ∞\Spn(Z)/Γ0(N ) so that each γM is reduced
modulo N ; when n > 1 and 8|N , we find a set {γM } that contains a com-
plete set of representatives so that with e′ = ord2(N ), each γM is reduced

modulo N/2e′ and partially reduced modulo 2e
′

(see Propositions 4.2 and

4.3). Further, given γM so that γM is reduced modulo N/2e′ and partially

reduced modulo 2e
′
, M is diagonal modulo qordq(N ) for q an odd prime divid-

ing N , and M is an orthogonal sum of unary and binary blocks modulo 2e
′
.

Using these representatives and the local structure of the lattice L at each
prime dividing N , it is fairly straightforward (and amusing) to evaluate the

generalized Gauss sums that give us θ(n)(genL; τ) as a linear combination
of the Siegel Eisenstein series corresponding to these representatives γM .
Consequently we prove the following.

Theorem 1.1. Let L be a rank 2k Z-lattice (k ∈ Z+), and let Q be a 2k×2k
integral symmetric matrix defining a positive definite quadratic form on L so
that Q(x) ∈ 2Z for any x ∈ L. Let N be the level of Q, and set e′ = ord2(N ).
Let {γM } be a complete set of representatives for Γ∞\Spn(Z)/Γ0(N ) so that
when e′ ≤ 2 or n = 1, each γM is reduced modulo N , and when e′ ≥ 3 and

n > 1, each γM is reduced modulo N/2e′ and partially reduced modulo 2e
′
.

Then for n ∈ Z+ with n < k − 1, we have

θ(n)(genL; τ) = κ
∑
M

a(L,M)Eγ
M

where κ = 1 if N > 2 and 1
2 otherwise, and a(L,M) =

∏
q|N aq(L,M) (q

prime) with aq(L,M) defined as follows. For a prime q|N with qe ‖ N , we
take G ∈ SL2k(Z) so that

tGQG ≡ J0 ⊥ qJ1 ⊥ · · · ⊥ qeJe (qe+2)

with each Jc of size rc × rc (some rc ≥ 0) and Jc invertible modulo q when
rc > 0; we also have

M ≡M0 ⊥ qM1 ⊥ · · · ⊥ qeMe (qe)

with each Mj of size dj × dj (some dj) and Mj invertible modulo q when
dj > 0. Then

aq(L,M) =
e∏
c=1

c−1∏
j=0

q(j−c)rcdj/2 ·

{
1 if 2|c− j,
q−rcdj/2GJc,Mj (q) otherwise.

For q odd,

GJc,Mj (q) =

(
det Jc
q

)dj (detMj

q

)rc
(G1(q))rcdj

where G1(q) is the classical Gauss sum; for q = 2, GJc,Mj (2) is similar (but
there are several cases), and the value of this quantity is given explicitly in
Proposition 5.5.
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This theorem leaves the following questions unanswered: how do we find
a basis of Siegel Eisenstein series when n ≥ k − 1, and how do we find a
complete set of representatives for Γ∞\Spn(Z)/Γ0(N ) when n > 1 and 8|N ?

The author thanks Bristol’s Automorphics Anonymous, Wai Kiu Chan,
and Jens Funke for fun and helpful conversations.

2. Preliminaries

Let L = Zx1 ⊕ · · · ⊕ Zxm, a Z-lattice of rank m, and let Q be an m×m
symmetric matrix with integral entries. Thus Q defines a quadratic form on
L, via the rule that for x = a1x1 + · · ·+ amxm ∈ L, we have

Q(x) = (a1 · · · am)Q t(a1 · · · am).

We assume that Q defines a positive definite quadratic form on L, meaning
that for x ∈ L, Q(x) > 0 whenever x ∈ L with x 6= 0. We also assume
that Q is even integral, meaning that Q ∈ Zn,nsym with even diagonal entries
(here, for a ring R, Rn,nsym denotes the set of n× n symmetric matrices with
entries in R). Thus for any x ∈ L, we have Q(x) ∈ 2Z. The level of Q (also
called the level of L) is the smallest positive integer N so that NQ−1 is even
integral.

For n ∈ Z+, we define the theta series θ(n)(L; τ) with variable

τ ∈ H(n) = {X + iY : X,Y ∈ Rn,nsym, Y > 0 }
by setting

θ(n)(L; τ) =
∑

U∈Zm,n
e{Q(U)τ},

where Y > 0 means that Y represents a positive definite quadratic form,
e{∗} = exp(πiTr(∗)), and Q(U) = tUQU . As mentioned earlier, θ(n)(L; τ)
is a Siegel modular form of degree n, weight m/2, level N and quadratic
character χ modulo N , meaning that with

Spn(Z) =

{(
A B
C D

)
: A tB = B tA, C tD = D tC, A tD −B tC = I

}
and

Γ0(N ) =

{(
A B
C D

)
∈ Spn(Z) : N|C

}
,

for any γ =

(
A B
C D

)
∈ Γ0(N ), we have

θ(n)(L; τ)|γ := det(Cτ +D)−m/2 θ(n)(L; (Aτ +B)(Cτ +D)−1)

= χL(detD) θ(n)(L; τ).

When m is odd, we need to specify how we are taking square-roots; from
hereon, we will assume that m = 2k with k ∈ Z. With this assumption, for
d ∈ Z with (d,N ) = 1, we have

χL(d) =

(
(−1)k detQ

|d|

)
sgn(d)k.

Suppose that L′ is a rank 2k Z-lattice with a positive definite quadratic
form given by Q′ ∈ Zn,nsym (relative to some Z-basis for L′). With L as
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above, we say that L′ is in the genus of L if, for every prime q, there is
some G ∈ GL2k(Zq) so that tGQ′G = Q; here Zq denotes the set of q-adic
integers. We say that L′ is in the same isometry class as L if there is some
G ∈ GL2k(Z) so that tGQ′G = Q. We define o(L′) to be the order of the
orthogonal group of L′ (being all G ∈ GL2k(Z) so that tGQ′G = Q′), and
we set

θ(n)(genL; τ) =
1

massL

∑
clsL′∈genL

1

o(L′)
θ(n)(L′; τ)

where

massL =
∑

clsL′∈genL

1

o(L′)

(so the 0th Fourier coefficient of θ(n)(genL; τ) is 1, as is the 0th Fourier

coefficient of θ(n)(L; τ)).
Besides the subgroup Γ0(N ) of Spn(Z), we also define the subgroups

Γ(N ) = {γ ∈ Spn(Z) : γ ≡ I (N ) },

Γ∞ =

{(
A B
0 D

)
∈ Spn(Z)

}
,

and

Γ+
∞ =

{(
A B
0 D

)
∈ Spn(Z) : detD = 1

}
.

For later convenience, we set G± =

(
In−1

−1

)
and γ± =

(
G±

G±

)
.

We repeatedly use that Tr(AB) = Tr(BA) and hence e{AB} = e{BA}.
Also, with A,B denoting square matrices, we write A ⊥ B to denote the
block diagonal matrix diag{A,B}, and for ring elements a1, . . . , ar, we write〈
a1, . . . , ar

〉
to denote diag{a1, . . . , ar}.

3. Siegel Eisenstein series

In [5], we constructed Siegel Eisenstein series of degree n, weight k ∈ Z+,
level N and character χ modulo N , presuming we have k > n + 1 (this
constraint is for reasons of convergence). Here we review this construction,
making a few minor modifications to this construction, resulting in a slight
modification to their normalizations; then we evaluate the Eisenstein series
at the cusps.

We first define an Eisenstein series for Γ(N ). With δ∗ chosen so that
Γ+
∞Γ(N ) = ∪δ∗Γ+

∞δ
∗ (disjoint) and τ ∈ H(n), we set

E∗(τ) =
∑
δ∗

1(τ)|δ∗ where 1(τ)|
(
A B
C D

)
= det(Cτ +D)−k.

Since 1(τ)|β = 1 for β ∈ Γ+
∞, E∗ is well-defined; further, it is analytic (in

all variables of τ). Note that for N ≤ 2, we have γ± ∈ Γ(N ) r Γ+
∞ and so

E∗ = 0 unless k is even.
Now take γ ∈ Spn(Z). Set

Γγ = {β ∈ Γ0(N ) : Γ∞Γ(N )γβ = Γ∞Γ(N )γ },
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and

Γ+
γ = {β ∈ Γ0(N ) : Γ+

∞Γ(N )γβ = Γ+
∞Γ(N )γ };

one easily checks that [Γγ : Γ+
γ ] = 1 or 2. Choose δ, δ′ so that

Γ0(N ) = ∪δΓ+
γ δ (disjoint), Γ+

γ = ∪δ′Γ(N )δ′ (disjoint);

using that Γ(N ) is a normal subgroup of Spn(Z), we see that

Γ+
∞γΓ0(N ) = ∪δ′,δΓ+

∞Γ(N )γδ′δ.

We set

E′γ =
∑
δ,δ′

χ(δδ′)E∗|γδ′δ;

here χ(δ) means χ(detDδ). Note that for β ∈ Γ+
γ , we have

∪δ∗Γ+
∞δ
∗γβ = Γ+

∞Γ(N )γβ = Γ+
∞Γ(N )γ = ∪δ∗Γ+

∞δ
∗γ,

and so E∗|γβ = E∗|γ; hence E′γ is well-defined. Also, for any α ∈ Γ0(N ),

δα varies over a set of coset representatives for Γ+
γ \Γ0(N ) as δ does, and so

E′γ |α = χ(α)E′γ . Notice that

E′γ =

(∑
δ′

χ(δ′)

)∑
δ

χ(δ)E∗|γδ,

and thus E′γ = 0 unless χ is trivial on Γ+
γ . Also notice that with γ, δ′, δ as

above, we have

Γ∞γΓ0(N ) = ∪δ′,δ
(
Γ+
∞Γ(N )γδ′δ ∪ Γ+

∞Γ(N )γ±γδ
′δ
)

and E′γ±γ = (−1)kE′γ .

For γ ∈ Spn(Z), set

Eγ =
1

[Γγ : Γ(N )]
E′γ .

So when Eγ 6= 0 and Γ+
γ = Γγ , we have

Eγ =
∑

δ∈Γγ\Γ0(N )

χ(δ)E∗|γδ.

Now suppose that Eγ 6= 0 and Γ+
γ 6= Γγ ; take β′ ∈ Γγ r Γ+

∞. Then

Eγ =
1

2

∑
δ∈Γγ\Γ0(N )

χ(δ)E∗|γδ +
1

2

∑
δ∈Γγ\Γ0(N )

χ(β′δ)E∗|γβ′δ.

By our choice of β′, we have γβ′γ−1 ∈ γ±Γ+
∞Γ(N ), so E∗|γβ′ = χ(−1)E∗|γ.

Hence

Eγ =
1

2

(
1 + χ(β′)χ(−1)

) ∑
δ∈Γγ\Γ0(N )

χ(δ)E∗|γδ,

and so Eγ = 0 unless χ(β′) = χ(−1).
Thus regardless of whether Γ+

γ = Γγ , when Eγ 6= 0 we have

Eγ =
∑

δ∈Γγ\Γ0(N )

χ(δ)E∗|γδ.
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As discussed in [5], as Γ∞γΓ0(N ) varies over Γ∞\Spn(Z)/Γ0(N ), the
non-zero Eγ form a basis for the space of Siegel Eisenstein series of degree
n, weight k, level N , and character χ.

Now we evaluate the non-zero Eγ at the cusps.

Proposition 3.1. Suppose that α, γ ∈ Spn(Z) so that Eγ 6= 0. If α 6∈
Γ∞γΓ0(N ), then

lim
τ→i∞

Eγ(τ)|α−1 = 0.

If α = βγδ′ for some β ∈ Γ∞ and δ′ ∈ Γ0(N ), then

lim
τ→i∞

Eγ(τ)|α−1 =

{
2 if N ≤ 2,

χ(δ′β) otherwise.

Proof. Since Eγ 6= 0, we have E∗ 6= 0 (so if N ≤ 2, k must be even). In [5],
we saw that

lim
τ→i∞

E∗(τ) =

{
2 if N ≤ 2,

1 if N > 2.

Thus limτ→i∞ Eγ |α−1 = 0 unless there is some δ ∈ Γ0(N ) so that γδα−1 ∈
Γ∞Γ(N ); so this limit is 0 whenever α 6∈ Γ∞γΓ0(N ).

Now suppose that α = βγδ′ for some β ∈ Γ∞ and some δ′ ∈ Γ0(N ). Thus

Eγ |α−1 = χ(δ′)Eγ |γ−1β−1.

Also,

lim
τ→i∞

Eγ(τ)|γ−1β−1 = lim
τ→i∞

∑
δ∈Γγ\Γ0(N )

χ(δ)E∗(τ)|γδγ−1β−1

= lim
τ→i∞

χ(β)E∗(τ)

as γδγ−1β−1 ∈ Γ∞Γ(N ) if and only if δ ∈ Γγ (in which case χ(δ)E∗|γδγ−1 =
E∗). Hence

lim
τ→i∞

Eγ(τ)|α−1 = χ(δ′β) lim
τ→i∞

E∗(τ).

(Note that χ is trivial when N ≤ 2.) �

Remark. Suppose that Eγ 6= 0. Recall that earlier we noticed that Eγ±γ =

(−1)kEγ . Thus with κ = 1/2 when N ≤ 2 and κ = 1 otherwise, by the above
proposition we have

κχ(γ±) = lim
τ→i∞

Eγ(τ)|(γ±γ)−1

= (−1)k lim
τ→i∞

Eγ±γ(τ)|(γ±γ)−1

= κ(−1)k.

Hence when Eγ 6= 0, we have χ(−1) = (−1)k.
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4. Representatives for 0-dimensional cusps

In this section, we assume that N is odd and we determine a set of
representatives for the 0-dimensional cusps, each of which corresponds to an
element of Γ∞\Spn(Z)/Γ0(N ). The representatives we find are of the form(
I 0
M I

)
.

Definition. Take M ∈ Zn,nsym and set γM =

(
I 0
M I

)
(so γM ∈ Spn(Z)). Set

H =

(
0 1
1 0

)
and A =

(
2 1
1 2

)
. We write Hd to denote the orthogonal sum

of d copies of H.

(a) Let q be an odd prime; fix ω so that
(
ω
q

)
= −1. For e ∈ Z+, we

say that γM is a reduced representative modulo qe if the following
conditions are met.
(i) M ≡ M0 ⊥ qM1 ⊥ · · · ⊥ qeMe (qe) with each Mj dj × dj and

invertible modulo q; take ` minimal so that d` > 0 and take h
maximal so that dh > 0;

(ii) if ` < j < e with dj > 0 then Mj =
〈
1, . . . , 1, εj

〉
where εj = 1

or ω;
(iii) if 0 < ` < h = e then M` =

〈
1, . . . , 1, ε`

〉
where ε` = 1 or ω;

(iv) if ` ≤ h < e then M` =
〈
1, . . . , 1, ε`

〉
where 1 ≤ ε ≤ qmin(`,e−h),

q - ε`.
(b) For n = 1 and e ∈ Z+, we say that γM is a reduced representative

modulo 2e if M ≡ 2`ε (2e) where 1 ≤ ε ≤ 2min(`,e−`) with 2 - ε.
(c) For n > 1, we say that γM is a reduced representative modulo 2 if

for some d ∈ Z, M ≡ Id ⊥ 0n−d (2); we say that γM is a reduced
representative modulo 4 if for some d ∈ Z, M ≡ Id ⊥ 2J1 ⊥ 4J2 (4)
where either J1 = Id′ or J1 = H ⊥ · · · ⊥ H.

(d) For n > 1 and e ≥ 3, we say that γM is a partially reduced represen-
tative modulo 2e if the following conditions are met.

(i) M ≡ M0 ⊥ 2M0 ⊥ · · · ⊥ 2eMe (2e) where each Mj is dj × dj
and invertible modulo 2; take ` minimal so that d` > 0;

(ii) if d0 > 0 then M0 ≡ I (2e);
(iii) if ` < j < e with dj > 0, then either Mj is diagonal with

diagonal entries from the set {1, 3, 5, 7}, or Mj = Hdj/2, or

Mj = Hdj/2−1 ⊥ A;
(iv) if 0 < ` < e then either M` =

〈
η1, . . . , ηd`

〉
with η1, . . . , ηd`−1 ∈

{1, 3, 5, 7} and ηd` odd, or M` = Hd`/2−1 ⊥ A′ where A′ =(
2a′ a
a 2a′a2

)
with a odd and a′ = 0 or 1.

For N ∈ Z+ with 8 - N , we say that γM is a reduced representative modulo
N if γM is a reduced representative modulo qe for each prime q|N with
qe ‖ N .

We will show that each element of Γ∞\Spn(Z)/Γ0(N ) is represented by
exactly one reduced representative modulo N . We begin with the following
easy proposition.
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Proposition 4.1. Fix N ∈ Z+.

(a) Suppose that δ ∈ Spn(Z). Then there is some M ′′ ∈ Zn,nsym so that
δ ∈ Γ∞γM′′Γ0(N ).

(b) Suppose that M,M ′′ ∈ Zn,nsym so that G(M ′′ I)β ≡ (M I) (N ) where
G ∈ GLn(Z) and β ∈ Γ0(N ). Then γ

M′′ ∈ Γ∞γMΓ0(N ).

Proof. (a) Write δ =

(
A B
C D

)
. By Proposition 3.4 [5], there is some M ′′ ∈

Zn,nsym so that (C D) = E(M ′′ I)γ for some E ∈ SLn(Z) and γ ∈ Γ0(N ).
Hence with

β =

(
tE−1

E

)
and γ0 =

(
I 0
M ′′ I

)
,

we have β ∈ Γ∞ and

βγ0γ =

(
∗ ∗
C D

)
∈ Spn(Z).

Therefore δ ∈ Γ∞βγ0γ ⊆ Γ∞γ0Γ0(N ).
(b) By Proposition 3.3 [5], we have G(M ′′ I)β ∈ (M I)Γ(N ) and hence(

tG−1

G

)(
I 0
M ′′ I

)
β ∈ Γ∞

(
I 0
M I

)
Γ(N ).

From this the claim easily follows. �

Proposition 4.2. Let N ∈ Z+, and take δ ∈ Spn(Z). Set e′ = ord2(N ).
When e′ ≤ 2 or n = 1 there is a reduced representative γM modulo N so that
δ ∈ Γ∞γMΓ0(N ). When e′ ≥ 3, there is some γM ∈ Spn(Z) with γM reduced

modulo N/2e′, γM partially reduced modulo 2e
′
, and δ ∈ Γ∞γMΓ0(N ).

Proof. By Proposition 4.1, there is someM ′′ ∈ Zn,nsym so that δ ∈ Γ∞γM′′Γ0(N ).
We show that γ

M′′ ∈ Γ∞γMΓ0(N ) where γM is a reduced representative
modulo N , and hence δ ∈ Γ∞γMΓ0(N ).

To do this, for each prime q|N with qe ‖ N , we find matrices E(q), G(q) ∈
SLn(Z) with E(q)G(q) ≡ I (N/qe), and α(q)β(q) ∈ Γ0(N ) with α(q)β(q) ≡
I (N/qe), and so that

tE(q) tG(q)(M ′′ I)α(q)β(q) ≡ (M I) (qe)

where γM is reduced modulo qe (or partially reduced when q = 2 and e ≥ 3).
Then we define E(N ), G(N ), α(N ), β(N ) by setting E(N ) =

∏
q|N E(q)

and so on. Thus we get
tE(N ) tG(N )(M ′′ I)α(N )β(N ) ≡ (M I) (N ).

Consequently, by Proposition 4.1, δ ∈ Γ∞γMΓ0(N ).
We first consider the case that q is odd.
(a) Fix an odd prime q|N and e ∈ Z+ so that qe ‖ N ; fix ω ∈ Z so that(
ω
q

)
= −1. We know by §91 [3], or equivalently Corollary 8.2 and Theorem

85 of [2], that there is some G′′ ∈ GLn(Zq) so that

tG′′M ′′G′′ = M ′′0 ⊥ qM ′′1 ⊥ · · · ⊥ qeM ′′e
with Mji′′ of size dj × dj for some dj , and when dj > 0 with j < e, M ′′j =〈
1, . . . , 1, η′′j

〉
where η′′j = 1 or ω. Fix ` to be minimal with d` > 0. Then
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right-multiplying G′′ by a suitable diagonal matrix, we obtain G′ ∈ SLn(Zq)
so that

tG′M ′′G′ = q`M ′` ⊥ q`+1M ′`+1 ⊥ · · · ⊥ qeM ′e
where M ′j =

〈
1, . . . , 1, η′j

〉
, with η′j = η′′j for ` < j < e when dj > 0, and

η′` = η′′` (detG′′)−2. Now take G = G(q) ∈ SLn(Z) so that G ≡ I (N/qe) and

G ≡ G′ (qe), and set M ′ = tGM ′′G. Thus M ′ ≡ q`M ′` ⊥ · · · ⊥ qeM ′e (qe).

Set α = α(q) =

(
G

tG−1

)
; then α ∈ Γ0(N ) with α ≡ I (N/qe), and

tG(M ′′ I)α = ( tGM ′′G I).

We now find E = E(q) ∈ SLn(Z) and β = β(q) ∈ Γ0(N ) so that
E(M ′ I)β ≡ (M ′ I) (N/qe) and E(M ′ I)β ≡ (M I) (qe) where γM is a
reduced representative modulo qe.

First note that for ` < j < e we have M ′j =
〈
1, . . . , 1, η′j

〉
= εj where

η′j = 1 or ω.

Suppose that 0 < ` < h = e. Take u ∈ Z so that η′`u
2 ≡ 1 or ω modulo

qe, and take u so that uu ≡ 1 (qe). Take E′ =

(
w x
y z

)
∈ SL2(Z) so that

E′ ≡
(
u

u

)
(qe) and E′ ≡ I (N/qe). Take β′ =

(
E′

t(E′)−1

)
. Thus

tE′
(
q`η′` 1

0 1

)
β′ ≡

(
q`η′`u

2 1
0 1

)
(qe).

We lift E′ to

E = E(q) =

(
W X
Y Z

)
∈ SLn(Z)

with E ≡ I (N/qe) by taking

W = Id`−1 ⊥
〈
w
〉
, X = 0d`−1 ⊥

〈
x
〉
,

Y = 0n−d`−1 ⊥
〈
y
〉
, Z = In−d`−1 ⊥

〈
z
〉
.

Set β = β(q) =

(
E

tE−1

)
. Then

tE(M ′ I)β ≡ (M I) (qe)

where γM is reduced modulo qe.
Now suppose that ` ≤ h < e and ` ≤ e−h. Choose η` so that 1 ≤ η` ≤ q`

with η` ≡ η′` (q`). Thus with η` ∈ Z so that η`η` ≡ 1 (qe), we have η`η
′
` =

1 + q`b′ for some b′ ∈ Z. Take b = −η′`b′, and take β′ =

(
w x
y z

)
∈ SL2(Z)

so that β′ ≡ I (N/qe) and β′ ≡
(
η′`η` b

η′`η`

)
(qe). Then

(q`η′` 1)β′ ≡ (q`η` 1) (qe).

We lift β′ to β = β(q) ∈ Γ0(N ) with β ≡ I (N/qe) by setting β =

(
W X
Y Z

)
where

W = Id`−1 ⊥
〈
w
〉
⊥ In−`, X = 0d`−1 ⊥

〈
x
〉
⊥ 0n−`,

Y = 0d`−1 ⊥
〈
y
〉
⊥ 0n−`, Z = Id`−1 ⊥

〈
z
〉
⊥ In−`.
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Then (M ′ I)β ≡ (M I) (qe) where γM is reduced modulo qe. We set E(q) =
I.

Finally, suppose that ` ≤ h < e and 0 < e − h < ` < e. Choose η`
so that 1 ≤ η` ≤ qe−h with η` ≡ η′` (qe−h). As e − h > 0, we know that(
η`η
′
`

q

)
= 1 and so there is some u ∈ Z so that η′`u

2 ≡ η` (qe). Take

E′ =

(
w x
y z

)
∈ SL2(Z) so that E′ ≡ I (N/qe) and E′ ≡

(
u

u

)
(qe)

where uu ≡ 1 (qe). Take β′ =

(
E′

t(E′)−1

)
. Then

tE′
(
q`η′` 1

qhη′h 1

)
β′ ≡

(
q`η` 1

qhη′hu
2 1

)
(qe).

We have u2 ≡ η′`η` ≡ 1 (qe−h), and thus qhη′hu
2 ≡ qhη′h (qe). We lift E′ to

E = E(q) ∈ SLn(Z) with E ≡ I (N/qe) by setting E′ =

(
W X
Y Z

)
where

W = Id`−1 ⊥
〈
w
〉
, X = 0d`−1 ⊥

〈
x
〉
,

Y = 0n−d`−1 ⊥
〈
y
〉
, Z = In−d`−1 ⊥

〈
z
〉
.

Set β = β(q) =

(
E

tE−1

)
. So β ∈ Γ0(N ) with β ≡ I (N/qe), and

tE(M ′ I)β ≡ (M I) (qe)

where γM is reduced modulo qe.
(b) Now suppose that n = 1, and fix a prime q|N with qe ‖ N ; take ` and

η′ so that M ′′ = q`η′, q - η′. If ` ≥ e then γ
M′′ is a reduced representative

modulo qe. So suppose that ` < e.
Suppose that e − ` ≤ `. Take η so that 1 ≤ η ≤ qe−` with η ≡ η′ (qe−`).

Then (q`η′ 1) ≡ (q`η 1) (qe), and so γ
M′′ is reduced modulo qe. Take

E(q), G(q), α(q), β(q) to be identity matrices.
Suppose that ` < e − `. Choose η so that 1 ≤ η ≤ q` with η ≡ η′ (q`).

Take u so that u ≡ ηη′ (qe) where η′η′ ≡ 1 (qe). Thus with u so that
uu ≡ 1 (qe), we have u = 1 + q`b′ for some b′. Take b = −η′b′, and take

β = β(q) ∈ SL2(Z) so that β ≡ I (N/qe) and β ≡
(
u b
0 u

)
(qe). Thus

(M ′′ 1)β = (M 1) where γM is reduced modulo qe. Take E(q), G(q), α(q) to
be identity matrices.

(c) Suppose that n > 1 and 2e ‖ N where e > 0. By §93 of [3], or
equivalently Theorem 8.9 of [2], there is some G′′ ∈ GLn(Z2) so that

tG′′M ′′G′′ = M ′′0 ⊥ 2M ′′1 ⊥ · · · ⊥ 2eM ′′e

with M ′′j dj × dj for some dj , and when dj > 0 with j < e, either M ′′j
is diagonal with entries from {1, 3, 5, 7}, or M ′′j = H ⊥ · · · ⊥ H where

H =

(
0 1
1 0

)
, or M ′′j = H ⊥ · · · ⊥ H ⊥ A where A =

(
2 1
1 2

)
. Then as in

case (a), we can take G = G(2) ∈ SLn(Z) so that G ≡ I (N/2e) and

M ′ = tGM ′′G ≡ 2`M ′` ⊥ · · · ⊥ 2eM ′e (2e)
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where M ′j = M ′′j for ` < j < e, and

M ′` =

(
I

(detG′′)−1

)
M ′′`

(
I

(detG′′)−1

)
.

Set α(2) =

(
G

tG−1

)
.

Note that if d1 > 0 then 2M ′′1 ≡ 2Id1 (4) or 2M ′′1 ≡ H ⊥ · · · ⊥ H (4);
hence if d0 = 0, then γ

M′ is completely reduced modulo 2e if e ≤ 2, and
partially reduced modulo 2e if e ≥ 3. So when d0 = 0 we take E(2) = I and
β(2) = I.

Suppose that d0 > 0. Take v ∈ Z so that v ≡ detM ′0 (2e) and v ≡

1 (N/2e); take

(
w x
y z

)
∈ SL2(Z) so that

(
w x
y z

)
≡
(
v

v

)
(N ) where

vv ≡ 1 (N ). Take δ′ =

(
W X
Y Z

)
where

W = Id0 ⊥
〈
w
〉
⊥ In−d0 , X = 0d0 ⊥

〈
x
〉
⊥ 0n−d0 ,

Y = 0d0 ⊥
〈
y
〉
⊥ 0n−d0 , Z = Id0 ⊥

〈
z
〉
⊥ In−d0 .

Now take M ′0 so that M ′0M
′
0 ≡ I (2e), and take U ∈ SLd0(Z) so that U ≡(

I
v

)
M ′′0 (2e) and U ≡ I (N/2e). Take U ′ so that U ′ ≡ U(I −M ′0) (2e)

and U ′ ≡ 0 (N/2e). Set

δ′′ =


U U ′

In−d0
tU−1

In−d0

 .

So δ′′ ∈ Γ0(N ) and δ′′ ≡ I (N/2e). Set β = β(2) = δ′δ′′ and E = E(2) = I.
Then tE tG(M ′′ I)αβ ≡ (M I) (2e) where γM is reduced modulo 2e if e ≤ 2,
and partially reduced modulo 2e if e ≥ 3. �

Proposition 4.3. Take N ∈ Z+ and set e′ = ord2(N ). Suppose that γ
M′ ∈

Γ∞γMΓ0(N ) where γM and γ
M′ are reduced representatives modulo N/2e′;

also suppose that γM and γ
M′ are reduced representatives modulo 2e

′
when

e′ ≤ 2, and partially reduced representatives modulo 2e
′

when e′ ≥ 3. Then
M ′ ≡ M (N/2e′), and M ′ ≡ M (2e

′
) if e′ ≤ 2. Hence for e′ ≤ 2, as

γM varies over reduced representatives modulo N , {γM } is a complete set
of representatives for Γ∞\Spn(Z)/Γ0(N ); for e′ ≥ 3, as γM varies over

representatives that are reduced modulo N/2e′ and partially reduced modulo

2e
′
, the set {γM } contains a set of representatives for Γ∞\Spn(Z)/Γ0(N ).

Proof. Since γ
M′ ∈ Γ∞γMΓ0(N ), we that there are E ∈ GLn(Z) and δ =(

A B
C D

)
∈ Γ0(N ) so that E(M I)δ = (M ′ I). Set (M ′′ I) = G±(M ′ I)γ±.

Since M ′ is diagonal moduloN/2e′ , we have M ′′ ≡M ′ (N/2e′); when e′ ≤ 2,

we have M ′′ ≡ M ′ (2e
′
). Thus replacing γ

M′ by γ±γM′γ± if necessary, we
can assume that E(M I)δ = (M ′ I) with E ∈ SLn(Z).

For e′ ≤ 2, Proposition 3.4 [5] shows that M ′ ≡M (2e
′
).
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So suppose that q is an odd prime dividing N with qe ‖ N . We have

M ≡M0 ⊥ qM1 ⊥ · · · ⊥ qeMe (qe)

with Mi di × di for some di, and when di > 0, Mi =
〈
1, . . . , 1, εi

〉
where εi

is as in the definition of a reduced representative modulo qe. Similarly,

M ′ ≡M ′0 ⊥ qM ′1 ⊥ · · · ⊥ qeM ′e (qe)

with Mi di×di for some di, and when di > 0, M ′i =
〈
1, . . . , 1, ε′i

〉
where ε′i is

as in the definition of a reduced representative modulo qe. Take ` minimal so
that d` > 0, and take h maximal so that dh > 0. Note that by assumption,
M ′ ≡ EMA (qe), where E,A are necessarily invertible modulo q Therefore
q` ‖ M ′ as q` ‖ M . So for 0 ≤ i < `, we have d′i = 0, and d′` > 0. We first
want to show d′i = di for each i with ` ≤ i ≤ e.

If ` = e then, since qt|C, we have M ′ ≡ M ≡ 0 (qe) so we are done. So
suppose ` < e.

Take r = min(h− `, e− 1− `). For 0 ≤ i ≤ r, take

Si = Id` ⊥ qId`+1
⊥ · · · ⊥ qiId`+i ⊥ q

iI ∈ Zn,n.
So S0 = I, and

q−`S−1
i M = M` ⊥M`+1 ⊥ · · · ⊥M`+i−1 ⊥ q−`−i

(
q`+iM`+i ⊥ · · · ⊥ qhMh

)
.

Suppose that 0 ≤ i < r, S−1
i ESi is integral (hence invertible modulo q),

and d′j = dj for ` ≤ j < ` + i. We claim d′`+i = d`+i and S−1
i+1ESi+1 is

integral. We have

d` + d`+1 + · · ·+ d`+i = rankq(q
−`S−1

i M)

= rankq(S
−1
i ESi)(q

−`S−1
i M)A.

Since S−1
i ESi and A are integral and invertible modulo q, and q−`S−1

i M is

integral, we must have that q−`S−1
i M ′ is integral. Therefore

d` + d`+1 + · · ·+ d`+i = rankq(q
−`S−1

i M ′)

= d` + d`+1 + · · ·+ d`+i−1 + d′`+i.

Hence d`+i = d′`+i. Also, we have

q−`S−1
i M =

(
U1

qU2

)
, q−`S−1

i M ′ =

(
U ′1

qU ′2

)
,

and

S−1
i ESi =

(
E1 E2

E3 E4

)
, A =

(
A1 A2

A3 A4

)
where U1, U

′
1, E1, A1 are (d` + · · ·+ d`+i)× (d` + · · ·+ d`+i), and U1, U

′
1 are

invertible modulo q. So (recalling that EMA ≡M ′ (qe)), we have(
U ′1

0

)
≡
(
E1U1A1 E1U1A2

E3U1A1 EeU1A2

)
(q).

Hence E1, A1 are invertible modulo q and E3 ≡ 0 (q). Thus with c =
d` + · · ·+ d`+i+1, (

Ic
1
q I

)
S−1
i ESi

(
Ic

qI

)
is integral; that is, S−1

i+1ESi+1 is integral.



AVERAGE SIEGEL THETA SERIES AS EISENSTEIN SERIES 13

Hence by induction on i, we have that d`+i = d′`+i for 0 ≤ i ≤ r =

min(h− `, e− 1− `), and S−1
r ESr is integral. Since M ′ ≡ tAM tE (qt), the

above argument also shows that SrAS
−1
r is integral.

With renewed notation, write E = (Eij), A = (Aij) where Eij , Aij are di×
dj (` ≤ i, j ≤ h). Since E,A are invertible modulo q and S−1

r ESr, SrAS
−1
r

are integral, we have Eij , Aij ≡ 0 (qi−j) whenever j < i < e. Thus Eii and
Aii are invertible modulo q for all i. Hence for ` ≤ i < e, we have

qiM ′i ≡
h∑
j=`

Eijq
jMjAji (qe).

For j < i < e we have qjEijMjAji ≡ 0 (qi−j), and so M ′i ≡ EiiAiAii (q).

Since E(M I)

(
A B
0 D

)
≡ (M ′ I) (qe), we have E(MB + D) ≡ I (qe). We

have q`|M , so ED ≡ I (q`). We also have tAD ≡ I (qe), so E ≡ tA (q`).
Therefore Eii ≡ tAii (q`) for all i. Hence for all i, we have(

detM ′i
q

)
=

(
detMi

q

)
.

Since

(
I 0
M I

)
and

(
I 0
M ′ I

)
are reduced representatives modulo qe, this

means that qiM ′i ≡ qiMi (qe) for ` < i < e and q`M` ≡ q`M ′` (qe) if ` = 0
or ` = e or 0 < ` < h = e.

So now suppose that 0 < ` ≤ h < e. Thus with m = min(`, e − h),
we have M` ≡

〈
1, . . . , 1, ε`

〉
(qe−`) and M ′` ≡

〈
1, . . . , 1, ε′`

〉
(qe−`) where

1 ≤ ε`, ε′` ≤ qm, q - ε`, ε′`. Since

q−`S−1
h−`EMA = (S−1

h ESh−`)(q
−`S−1

h−`M)A,

we have

M ′` ⊥ · · · ⊥M ′h ≡ (S−1
h−`ESh−`)(M` ⊥ · · · ⊥Mh)A (qe−h)

with S−1
h−`ESh−` integral with determinant 1, and detA ≡ 1 (q`). Hence

det(M ′` ⊥ · · · ⊥M ′h) ≡ det(M` ⊥ · · · ⊥Mh) (qm).

We have seen that for ` < i ≤ h (with di > 0), we have qiM ′i ≡ qiMi (qe),
and hence detM ′i ≡ detMi (qe−i). Thus detM ′i ≡ detMi (qm) for ` < i ≤
h. Consequently, since detMi is a unit modulo q when di > 0, we have
detM ′` ≡ detM` (qm). Hence M ′` ≡M` (qm), and so M ′ ≡M (qe).

As this holds for all primes q|N with qe ‖ N , we have M ′ ≡M (qe). Thus
γ−1
M′
γM ≡ I (N ), and hence γ

M′ ∈ γMΓ(N ). �

5. Evaluating average theta series at the cusps

As noted earlier, in [4] Siegel showed that the value of the average theta
series at any 0-dimensional cusp is given by a generalized Gauss sum. Here
we first review that result, using the representatives for the 0-dimensional
cusps that we described earlier. Then we unwind the generalized Gauss sum
to realize it explicitly in terms of powers of primes, Legendre symbols, and
eighth roots of unity.
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Proposition 5.1. Suppose that L = Zx1⊕· · ·⊕Zxm with m = 2k, k ∈ Z+.
Also suppose that Q ∈ Zm,msym is the matrix for a positive definite, even integral
quadratic form on L relative to the given basis for L; let N be the level of

Q. Take

(
I 0
−M I

)
∈ Spn(Z). Then we have

lim
τ→i∞

θ(n)(L; τ)|
(

I 0
−M I

)
=

∏
qe‖N
q prime

aq(L,M)

where, with q prime and qe ‖ N ,

aq(L,M) = q−emn
∑

V ∈Zm,n/qeZm,n
e{N 2Q−1(V )M/q2e}.

Proof. We will use the Inversion Formula (Lemma 1.3.15 [1]), which says
the following. With U0 ∈ Qm,n and

θ(n)(L,U0; τ) =
∑

U∈Zm,n
e{Q(U + U0)τ},

we have

θ(n)(L,U0; τ) = (detQ)−n/2(det(−iτ))−m/2
∑

U ′∈Zm,n
e{−Q−1(U ′)τ−1 − 2 tU ′U0}.

Take

(
I 0
−M I

)
∈ Spn(Z). Then applying the Inversion Formula we have

θ(n)(L; τ(−Mτ + I)−1)

= (detQ)−n/2(det(−iτ(−Mτ + I)−1))−m/2

·
∑

U∈Zm,n
e{−Q−1(U)(−M + τ−1)}

= (detQ)−n/2(det(−iτ(−Mτ + I)−1))−m/2∑
U0∈Zm,n/NZm,n

e{Q−1(U0)M}θ(n)(N 2Q−1,N−1U0;−τ−1).

Applying the Inversion Formula again, we get

θ(n)(L; τ(−Mτ + I)−1)

= N−mn det(−Mτ + I)k
∑

U0,U1∈Zm,n/NZm,n
e{Q−1(U0)M − 2N−1 tU0U1}

·
∑

U∈Zm,n
e{Q(N−1U1 + U)τ}.

Now we consider

lim
τ→i∞

θ(n)(L; τ)|
(

I 0
−M I

)
= N−mn

∑
U0,U1 (N )

e{Q−1(U0)M − 2N−1 tU0U1}

· lim
τ→i∞

∑
U∈Zm,n

e{Q(N−1U1 + U)τ}.
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We have

lim
τ→i∞

∑
U∈Zm,n

e{Q(N−1U1 + U)τ} =

{
1 if U1 ∈ NZm,n

0 otherwise.

Hence

lim
τ→i∞

θ(n)(L; τ)|
(

I 0
−M I

)
= N−mn

∑
U0 (N )

e{Q−1(U0)M}.

Write N = qe11 · · · qess where q1, . . . , qs are the distinct primes dividing N ,
and set Ni = N/qeii . Let L = Zm,n (an additive group). One easily verifies
that the map

(U1 +NL, . . . , Us +NL) 7→ U1 + · · ·+ Us +NL
defines an isomorphism from N1L ⊕ · · · ⊕ NsL onto L/NL. Also, for Ui =
NiVi ∈ NiL (1 ≤ i ≤ s), since NQ−1 is even integral we have

Q−1(U1 + · · ·+ Us) ≡
s∑
i=1

Q−1(Ui) (2Z).

Hence ∑
U∈L/NL

e{Q−1(U)M} =

s∏
i=1

 ∑
Vi∈L/q

ei
i L

e{(Ni)2Q−1(Vi)M}

 .

�

Next we use the local structure of Q over Zq for a prime q|N to simplify
the sum defining aq(L,M), describing it in terms of invariants of ZqL, M
modulo qe, and certain generalized Gauss sums, defined as follows.

Definition. Suppose that q is prime, and r, d, h ∈ Z+. Take J ′ ∈ Zr,rsym and

M ′ ∈ Zd,dsym so that J ′ and M ′ are invertible modulo q, and 2|J ′ when q 6= 2.
Set

GJ ′,M ′(qh) =
∑

x∈Zr,d/qhZr,e
e{J ′(x)M ′/qh}.

For x, y ∈ Zr,d, one easily verifies that e{J ′(x+qhy)M ′/qh} = e{J ′(x)M ′/qh},
and hence GJ ′,M ′(qh) is well-defined. Note that for E ∈ SLr(Z) and G ∈
SLd(Z), EUG varies over Zr,d/qhZr,d as U does; hence with J ′′ =t EJ ′E
and M ′′ = GM ′ tG, we have GJ ′′,M ′′(qh) = GJ ′,M ′(qh). Also, GJ ′,M ′(qh) =

GM ′,J ′(q
h).

Proposition 5.2. Suppose that L = Zx1⊕· · ·Zxm is equipped with an even
integral quadratic form represented by Q ∈ Zm,msym relative to the given basis
for L. Let N be the level of Q, and suppose that q is a prime with qe ‖ N
where e ∈ Z+.

(a) There is some G ∈ SLm(Zq) so that

GQ tG ≡ J0 ⊥ qJ1 ⊥ · · · qeJe (qe+2)

where each Jc is rc×rc for some rc. Further, when q 6= 2 and rc > 0,

Jc = 2
〈
1, . . . , 1, νc

〉
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with q - νc; when q = 2 and rc > 0,

Jc =
〈
µ1, . . . , µrc

〉
or Hdc/2 or Hdc/2−1 ⊥ Ac

where µ1, . . . , µrc ∈ {1, 3, 5, 7}, H =

(
0 1
1 0

)
, and Ac =

(
2a′c ac
ac 2a′ca

2
c

)
with a′c = 0 or 1, and ac odd. Also, when q = 2 and r0 > 0, J0 is
even integral. Further, when q 6= 2, re > 0; when q = 2, J0 is even
integral, and either re > 0 and Je is even integral, or re = 0 and
re−1 > 0 with Je−1 diagonal.

(b) Take M ∈ Zn,nsym so that

M = M0 ⊥ qM1 ⊥ · · · ⊥ qeMe

with each Mj dj × dj, and Mj is invertible modulo q when dj > 0.
Then

∑
V ∈Zm,n/qeZm,n

e{N 2Q−1(V )M/q2e}

= qmne
e∏
c=1

c−1∏
j=0

qrcdj(j−c)GJ ′c,Mj
(qc−j)

where, for each c so that rc > 0, J ′c =

(
I

uc

)
Jc

(
I

uc

)
for some

uc, q - uc

Proof. (a) Fix a prime q with qe ‖ N . By §93 of [3], or equivalently Theorems
8.5 and 8.9 of [2], we know that there is some G′ ∈ SLm(Zq) so that

tG′QG′ = J0 ⊥ qJ1 ⊥ · · · qeJe

where each Jc is as in the statement of the proposition; in particular, each
Jc is invertible modulo q. Note that since Q is even integral, when q = 2 and
r0 > 0, we have that J0 is even integral; also, when q = 2 and re > 0, we have
that Je is even integral since NQ−1 is even integral. Taking G ∈ SLm(Z)
so that G ≡ G′ (qe+1), we get

tGQG ≡ J0 ⊥ qJ1 ⊥ · · · qeJe (qe+2).

(b) Take G′ as in (a). Then

( tG′QG′)−1 = J−1
0 ⊥ · · · ⊥ q−eJ−1

e .

Take N ′ = N/qe and u ∈ Zq so that

G′′ = (N ′G′)−1(J0 ⊥ J1 ⊥ · · · ⊥ Je)
(
I

u

)
∈ SLm(Zq)

(recall that each Ji is invertible over Zq whenever ri > 0). Take E ∈ SLm(Z)
so that E ≡ G′′ (qe). Thus qe(N ′)2 tEQ−1E ≡ Q′ (qe) where

Q′ = qeJ ′0 ⊥ qe−1J ′1 ⊥ · · · ⊥ J ′e (qe+1)
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and, for each c so that rc > 0, either J ′c = Jc or J ′c =

(
I

u

)
Jc

(
I

u

)
.

Since EV varies over Zm,n/qeZm,n as V does, we have∑
V ∈Zm,n/qeZm,n

e{N 2Q−1(V )M/q2e}

=
∑

V ∈Zm,n/qeZm,n
e{Q′(V )M/qe}

=
e∏
c=0

e∏
j=0

∑
x∈Zrc,dj /qeZrc,dj

e{J ′c(x)Mj/q
c−j}

= qr0e(d0+···+de)
e∏
c=1

qrce(dc+···+de)
c−1∏
j=0

qrcdj(e−c+j)GG′c,Mj
(qc−j)

= qmne
e∏
c=1

c−1∏
j=0

qrcdj(j−c)GJ ′c,Mj
(qc−j)

where, for the last equality, we used that d0 + · · ·+de = n and r0 + · · ·+re =
m. �

We now evaluate the Gauss sums that appear in the above proposition.
We first use a standard argument to reduce the modulus of the Gauss sum.

Proposition 5.3. Let q be a prime, r, d ∈ Z+, J ′ ∈ Zr,rsym, M ′ ∈ Zd,dsym

(r, d > 0) so that J ′,M ′ are invertible modulo q. Then for h ≥ 2, we have

GJ ′,M ′(qh) =

{
qrdh/2 if 2|h,

qrd(h−1)/2GJ ′,M ′(q) otherwise.

Proof. We have

GJ ′,M ′(qh) =
∑

x∈Zr,d/qh−1Zr,d

∑
y∈Zr,d/qZr,d

e{J ′(x+ qh−1y)M ′/qh}

=
∑

x∈Zr,d/qh−1Zr,d
e{J ′(x)M ′/qh}

∑
y∈Zr,d/qZr,d

e{M ′ txJ ′y/q}.

This last sum on y is a character sum, yielding 0 if q - x and qrd otherwise.
Hence GJ ′,M ′(qh) = qrdGJ ′,M ′(qh−2). Repeated applications of this identity
yields the result. �

Now we evaluate the Gauss sums GJ ′,M ′(q), separating the cases of q odd
and even.

Proposition 5.4. Let q be an odd prime. Suppose that J ′ ∈ Zr,rsym and

M ′ ∈ Zd,dsym (r, d > 0) so that J ′,M ′ are invertible modulo q. Then

GJ ′,M ′(q) =

(
det J

q

)d(detM ′

q

)r
(G1(q))rd

where G1(q) is the classical Gauss sum. Thus for u ∈ Z with q - u and

J =

(
I

u

)
J ′
(
I

u

)
,
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we have GJ ′,M ′(q) = GJ,M ′(q).

Proof. As in the proof of Proposition 5.2, we can find E ∈ SLr(Z) and E′ ∈
SLd(Z) so that tEJ ′E ≡ 2

〈
1, . . . , 1, ν

〉
(q) and tE′M ′E′ ≡

〈
1, . . . , 1, ε

〉
(q).

As ExE′ varies over Zr,d/qZr,d as x does, we can replace x by ExE′ in the
sum defining GJ ′,M ′(q). Expanding tx( tEJ ′E)x( tE′M ′E′) we find that

GJ ′,M ′(q) =
(
G1,M ′(q)

)r−1 · Gν,M ′(q)

= (G1(q))(r−1)(d−1) (Gν(q))d−1 (Gε(q))r−1 · Gνε(q).

Since Ga(q) =
(
a
q

)
G1(q), the result follows. �

To help us state the next proposition, we introduce the following termi-
nology.

Definition. Suppose that J ′ ∈ Zr,rsym (r > 0) so that 2 - det J ′ and J ′

is even integral. As discussed in the proof of Proposition 5.2, we can find
E ∈ SLr(Z) so that

tEJ ′E ≡ H ⊥ · · · ⊥ H ⊥ A′ (4)

where H =

(
0 1
1 0

)
and A′ = ±H or ±

(
2 1
1 2

)
. When A′ = ±H then we

say that J ′ is hyperbolic modulo 4; note that J ′ is hyperbolic modulo 4
exactly when J ′ is even integral and (−1)r/2 det J ′ ≡ 1 (4).

Proposition 5.5. Suppose that J ′ ∈ Zr,rsym and M ′ ∈ Zd,dsym (r, d > 0) so that
J ′,M ′ are invertible modulo 2.

(a) Suppose that J ′ and M ′ are even integral. Then GJ ′,M ′(2) = 2rd/2.
(b) Suppose that either J ′ or M ′ is not even integral, and that the other is

even integral and hyperbolic modulo 4. Then Then GJ ′,M ′(2) = 2rd/2.
(c) Suppose that either J ′ or M ′ is not even integral, and that the other

is even integral but not hyperbolic modulo 4. Then GJ ′,M ′(2) =

(−1)rd2rd/2.
(d) Suppose that neither J ′ nor M ′ is even integral; in this case there

exist E ∈ SLr(Z), E′ ∈ SLd(Z), r′, d′ ∈ Z so that

tEJ ′E ≡ Ir′ ⊥ 3Ir−r′ (4) and tE′M ′E′ ≡ Id′ ⊥ 3Id−d′ (4).

Then GJ ′,M ′(2) = (2i)rd/2(−i)2r′d′−rd′−r′d.

Also, for odd u ∈ Z and

J =

(
I

u

)
J ′
(
I

u

)
,

we have GJ,M ′(2) = GJ ′,M ′(2).

Proof. As we saw in the proof of Proposition 5.2, we can find E ∈ SLr(Z)
so that when J ′ is even integral we have

tEJ ′E ≡ H ⊥ · · · ⊥ H ⊥ A′ (4)

with A′ = ±H or ±
(

2 1
1 2

)
, and when J ′ is not even integral we have

tEJ ′E ≡ Ir′ ⊥ 3Ir−r′ (4) for some r′. Similarly, we can find E′ ∈ SLd(Z) so
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that when M ′ is even integral we have

tE′M ′E′ ≡ H ⊥ · · · ⊥ H ⊥ A′′ (4)

with A′′ = ±H or ±
(

2 1
1 2

)
, and when M ′ is not even integral we have

tE′M ′E′ ≡ Id′ ⊥ 3Id−d′ (4) for some d′. In the sum defining GJ ′,M ′(2), we

can replace x ∈ Zr,d/2Zr,d by ExE′, and then GJ ′,M ′(2) decomposes as a
product of sums over 2× 2 or 2× 1 or 1× 2 or 1× 1 matrices modulo 2.

For A′ =

(
2a′ b′

b′ 2c′

)
, A′′ =

(
2a′′ b′′

b′′ 2c′′

)
with b′, b′′ odd, we have∑

x∈Z2,2/2Z2,2

e{A′(x)A′′/2} = 2
∑

u,u′∈Z/2Z

e{uu′b′b′′} = 4.

With A′ = ±H, A′′ = ±
(

2 1
1 2

)
and ε odd, we have∑

x∈Z2,1

e{A′(x)ε/2} = 2 and
∑
x∈Z2,1

e{A′′(x)ε/2} = −2.

Finally, with νε odd, we have∑
x∈Z/2Z

e{νεx2/2} =

{
1 + i if νε ≡ 1 (4),

1− i if νε ≡ −1 (4).

From this the proposition follows. �

6. Proof of Theorem 1.1

We have a dimension 2k Z-lattice L equipped with a positive definite,

even integral quadratic form represented by Q ∈ Z2k,2k
sym . We let M ∈ Zn,nsym

vary so that {Eγ
M
} is a basis for the space of Siegel Eisenstein series of

degree n, weight k, level N , and character χL (where χL is the character

associated to θ(n)(L; τ), as defined in Section 2). By Proposition 4.2, we

can assume that each γM =

(
I 0
M I

)
is a reduced representative modulo

N/2ord2(N ) and a partially reduced representative modulo 2ord2(N ). From
[4], we know that for some a′(L,M) we have

θ(n)(genL; τ) =
∑
M

a′(L,M)Eγ
M
.

For Eγ
M

and Eγ
N

in the basis for Siegel Eisenstein series, Proposition 3.1
gives us

lim
τ→i∞

Eγ
N

(τ)|γ−1
M

=


2 if N = M and N ≤ 2,

1 if N = M and N > 2,

0 otherwise,

and Proposition 5.1 gives us

lim
τ→i∞

θ(n)(L; τ)|γ−1
M

=
∏
q|N

aq(L,M)
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where aq(L,M) is defined in Proposition 5.1.
Fix a prime q|N with qe ‖ N . By Proposition 5.2, there is some G ∈

SLm(Z) so that
tGQG ≡ J0 ⊥ qJ1 ⊥ · · · ⊥ qeJe (qe+2)

where for 0 ≤ c ≤ e, there is some rc so that Jc is rc × rc, integral and
symmetric, with q - det Jc when rc > 0. Also, by our choices of M ,

M ≡M0 ⊥ qM1 ⊥ · · · ⊥ qeMe (qe)

where for 0 ≤ j < e, there is some dj so that Mj is dj × dj , integral and
symmetric, with q -Mj when dj > 0. By Propositions 5.2 and 5.3, aq(L,M)

is determined by GJ ′c,Mj
(q) (0 ≤ j < c ≤ e) where J ′c =

(
I

uc

)
Jc

(
I

uc

)
for some uc with q - uc. By Propositions 5.4 and 5.5, we have GJ ′c,Mj

(q) =
GJc,Mj (q), and when q is odd, GJc,Mj (q) is determined by the dimensions and
determinants of Jc and Mj .

Now consider the case that q = 2. A priori, by Proposition 5.5, GJc,Mj (2)
is determined by the structures of Jc and Mj modulo 4, yet we only know the
structure of Me−1 modulo 2, and we do not even know the structure of Me

modulo 2. However, the formula for aq(L,M) only involves the Gauss sums
GJc,Mj (2) for 0 ≤ j < c ≤ e, so we only need to ascertain that GJe,Me−1(2) is
well-determined by Me−1 modulo 2 in the case that re, de−1 > 0. In the case
that re, de−1 > 0, we know from Proposition 5.2 that Je is even integral, and
so by Proposition 5.5, the value of GJe,Me−1(2) is determined by whether Je
is hyperbolic, and whether Me−1 is even integral (which can be discerned
by Me−1 modulo 2).

Consequently Propositions 5.1–5.5 show that limτ→i∞ θ
(n)(L; τ)|γ−1

M
is

determined by M and the local structure of L at each prime dividing N .
Hence

lim
τ→i∞

θ(n)(genL; τ)|γ−1
M

= lim
τ→i∞

θ(n)(L; τ) = κ
∏
q|N

aq(L,M)

where κ = 1 if N > 2 and κ = 1/2 otherwise. Also, Propositions 5.1–5.5
give us the exact value of aq(L,M) for each prime q|N . Note that since
a′(L,M) 6= 0 for those M in the theorem, we conclude that Eγ

M
6= 0.
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